論文の概要: Should we agree to disagree about Twitter's bot problem?
- arxiv url: http://arxiv.org/abs/2209.10006v2
- Date: Sat, 5 Nov 2022 22:21:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 11:17:32.686238
- Title: Should we agree to disagree about Twitter's bot problem?
- Title(参考訳): Twitterのボット問題に同意しないべきか?
- Authors: Onur Varol
- Abstract要約: ボットに類似した行動、検出方法、検査された人口に対する仮定が、Twitter上でのボットの割合の推定にどのように影響するかを論じる。
当社は、プラットフォームがユーザに影響を与える可能性のある脅威に対処する上で、警戒し、透明性を保ち、バイアスを負わないことの責任を強調しています。
- 参考スコア(独自算出の注目度): 1.6317061277457
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bots, simply defined as accounts controlled by automation, can be used as a
weapon for online manipulation and pose a threat to the health of platforms.
Researchers have studied online platforms to detect, estimate, and characterize
bot accounts. Concerns about the prevalence of bots were raised following Elon
Musk's bid to acquire Twitter. Twitter's recent estimate that 5\% of
monetizable daily active users being bot accounts raised questions about their
methodology. This estimate is based on a specific number of active users and
relies on Twitter's criteria for bot accounts. In this work, we want to stress
that crucial questions need to be answered in order to make a proper estimation
and compare different methodologies. We argue how assumptions on bot-likely
behavior, the detection approach, and the population inspected can affect the
estimation of the percentage of bots on Twitter. Finally, we emphasize the
responsibility of platforms to be vigilant, transparent, and unbiased in
dealing with threats that may affect their users.
- Abstract(参考訳): ボットは単に自動化によって制御されるアカウントとして定義され、オンライン操作の武器として使用され、プラットフォームの健全性に脅威を与える。
研究者はボットアカウントの検出、推定、特徴付けのためにオンラインプラットフォームを研究した。
イーロン・マスクがTwitterを買収したことで、ボットの普及が懸念された。
Twitterの最近の推計では、毎日のアクティブユーザー数の5%がボットアカウントであるという。
この推定は、特定の数のアクティブユーザーに基づいており、twitterのボットアカウントの基準に依存している。
この作業では、適切な見積もりを行い、異なる方法論を比較するために、重要な質問に答える必要があることを強調したい。
ボットに類似した行動,検出アプローチ,および人口に対する仮定が,Twitter上でのボットの割合の推定にどのように影響するかを論じる。
最後に、ユーザに影響を与える可能性のある脅威に対処する上で、警戒し、透明で、偏見のないプラットフォームに対する責任を強調します。
関連論文リスト
- Unmasking Social Bots: How Confident Are We? [41.94295877935867]
本稿では,ボット検出と不確実性の定量化の両方に対処することを提案する。
この二重焦点は、各予測の定量化の不確実性に関連する追加情報を活用することができるため、非常に重要である。
具体的には,予測を高い信頼性で行う場合のボットに対する標的的介入を促進するとともに,予測が不確実な場合の警告(例えば,より多くのデータ収集)を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:33:52Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitterは、ボットや偽アカウントのターゲットとなり、偽情報や操作の拡散につながった。
本稿では,機械学習モデル開発に関連する課題に対処するために,セミオートマチック機械学習パイプライン(SAMLP)を提案する。
ユーザプロファイル機能に基づいたボット検出モデルBotArtistを開発した。
論文 参考訳(メタデータ) (2023-05-31T09:12:35Z) - You are a Bot! -- Studying the Development of Bot Accusations on Twitter [1.7626250599622473]
地上の真実データがないと、研究者たちは群衆の知恵を取り入れたいかもしれない。
本研究は,Twitter上でのボットの告発に関する大規模な研究である。
この言葉は、ソーシャルメディアの会話において、ボットという用語が非人間化の道具になったことを示している。
論文 参考訳(メタデータ) (2023-02-01T16:09:11Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
ソーシャルボットは、世論を操作することを目的として悪意あるアクターが運営するソーシャルメディアアカウントの自動化だと考えられている。
社会ボットの活動は、アメリカ合衆国大統領選挙を含む様々な政治的文脈で報告されている。
ソーシャルボットの普及率を推定するために広く利用されている研究設計の根本的な欠点を指摘する。
論文 参考訳(メタデータ) (2022-07-23T09:31:30Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Characterizing Retweet Bots: The Case of Black Market Accounts [3.0254442724635173]
我々は、ブラックマーケットからリツイートを購入することで発見されたリツイートボットを特徴付けている。
偽アカウントなのか偽アカウントなのか、それとも偽アカウントなのかを検知する。
また,人的管理アカウントとの違いも分析した。
論文 参考訳(メタデータ) (2021-12-04T15:52:46Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - BotSpot: Deep Learning Classification of Bot Accounts within Twitter [2.099922236065961]
Twitterのオープン化機能により、プログラムはTwitter APIを通じてTwitterアカウントを自動生成および制御できる。
ボットとして知られるこれらのアカウントは、ツイート、リツイート、フォロー、フォロー解除、他のアカウントへのダイレクトメッセージなどのアクションを自動的に実行する。
我々は,多層パーセプトロンニューラルネットワークとボットアカウントの9つの特徴を備えた,ディープラーニングを用いた新しいボット検出手法を提案する。
論文 参考訳(メタデータ) (2021-09-08T15:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。