論文の概要: Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation
- arxiv url: http://arxiv.org/abs/2109.03858v1
- Date: Wed, 8 Sep 2021 18:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-10 14:22:37.715849
- Title: Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation
- Title(参考訳): コリファレンス解決と機械翻訳のための大規模ジェンダーバイアスデータセットの収集
- Authors: Shahar Levy, Koren Lazar, abriel Stanovsky
- Abstract要約: 3つのドメインのコーパスにおいて,ステレオタイプおよび非ステレオタイプなジェンダーロール代入を示す文法パターンが発見された。
我々は、コーパスの品質を手動で検証し、様々なコア参照解像度と機械翻訳モデルにおける性別バイアスを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have found evidence of gender bias in models of machine
translation and coreference resolution using mostly synthetic diagnostic
datasets. While these quantify bias in a controlled experiment, they often do
so on a small scale and consist mostly of artificial, out-of-distribution
sentences. In this work, we find grammatical patterns indicating stereotypical
and non-stereotypical gender-role assignments (e.g., female nurses versus male
dancers) in corpora from three domains, resulting in a first large-scale gender
bias dataset of 108K diverse real-world English sentences. We manually verify
the quality of our corpus and use it to evaluate gender bias in various
coreference resolution and machine translation models. We find that all tested
models tend to over-rely on gender stereotypes when presented with natural
inputs, which may be especially harmful when deployed in commercial systems.
Finally, we show that our dataset lends itself to finetuning a coreference
resolution model, finding it mitigates bias on a held out set. Our dataset and
models are publicly available at www.github.com/SLAB-NLP/BUG. We hope they will
spur future research into gender bias evaluation mitigation techniques in
realistic settings.
- Abstract(参考訳): 近年の研究では、主に合成診断データセットを用いた機械翻訳と共参照分解のモデルにおけるジェンダーバイアスの証拠が見つかっている。
これらは、制御された実験でバイアスを定量化するが、小規模で、主に人工的な分散文からなることが多い。
本研究では,3つのドメインのコーパスにおけるステレオタイプおよび非ステレオタイプなジェンダーロール(例えば,女性看護師と男性ダンサー)の割り当てを示す文法的パターンを見出した。
我々は、コーパスの品質を手動で検証し、様々なコア参照解像度と機械翻訳モデルにおける性別バイアスを評価する。
テストされたモデルはすべて、自然入力が提示された場合に性ステレオタイプに過度に依存する傾向にあり、商用システムでは特に有害である可能性がある。
最後に、データセットが共参照解決モデルの微調整に役立ち、保持されたセットのバイアスを軽減できることを示します。
我々のデータセットとモデルはwww.github.com/SLAB-NLP/BUGで公開されています。
現実的な環境でのジェンダーバイアス評価の緩和技術の研究を加速させることを願っている。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Are Models Biased on Text without Gender-related Language? [14.931375031931386]
ステレオタイプフリーシナリオにおけるジェンダーバイアスを調査するための新しいフレームワークUnStereoEval(USE)を紹介する。
USEは事前学習データ統計に基づいて文レベルスコアを定義し、その文が単語と性別の関連が最小限であるかどうかを判定する。
28の試験モデルにおいて、偏見が低いことは、偏見が単にジェンダー関連の単語の存在に由来するものではないことを示唆している。
論文 参考訳(メタデータ) (2024-05-01T15:51:15Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - A Tale of Pronouns: Interpretability Informs Gender Bias Mitigation for
Fairer Instruction-Tuned Machine Translation [35.44115368160656]
機械翻訳モデルがジェンダーバイアスを示すか否かについて検討する。
We found that IFT model default to male-inflected translations, evengarding female occupational stereotypes。
実装が容易で効果的なバイアス緩和ソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-18T17:36:55Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in
Multilingual Machine Translation [28.471506840241602]
ジェンダーバイアスは機械翻訳において重要な問題であり、バイアス軽減技術の研究が進行中である。
本稿では,新しいアプローチに基づくバイアス緩和手法を提案する。
Gender-Aware Contrastive Learning, GACLは、文脈性情報を非明示性単語の表現にエンコードする。
論文 参考訳(メタデータ) (2023-05-23T12:53:39Z) - Exploring Gender Bias in Retrieval Models [2.594412743115663]
情報検索におけるジェンダーバイアスの緩和は,ステレオタイプの普及を避けるために重要である。
本研究では,(1)クエリに対するドキュメントの関連性,(2)ドキュメントの“ジェンダー”という2つのコンポーネントからなるデータセットを用いる。
我々は,大容量のBERTエンコーダの完全微調整を行う場合,IRの事前学習モデルはゼロショット検索タスクではうまく動作しないことを示す。
また、事前学習されたモデルには性別バイアスがあり、検索された記事は女性よりも男性が多い傾向にあることを示した。
論文 参考訳(メタデータ) (2022-08-02T21:12:05Z) - First the worst: Finding better gender translations during beam search [19.921216907778447]
文法的ジェンダー翻訳における体系的誤りによるジェンダーバイアスに着目した。
ソース文から自動的に得られる性別特徴を用いて,nbestリストのランク付け実験を行った。
これらの技術を組み合わせることで、追加のバイリンガルデータや追加のNMTモデルを必要としないWinoMT精度が大幅に向上します。
論文 参考訳(メタデータ) (2021-04-15T12:53:30Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。