論文の概要: Axiomatic Aggregations of Abductive Explanations
- arxiv url: http://arxiv.org/abs/2109.03890v5
- Date: Wed, 27 Sep 2023 20:17:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 23:25:29.181128
- Title: Axiomatic Aggregations of Abductive Explanations
- Title(参考訳): 帰納的説明の公理的集約
- Authors: Gagan Biradar, Yacine Izza, Elita Lobo, Vignesh Viswanathan, Yair Zick
- Abstract要約: ポストホックモデル近似説明法のロバスト性に対する最近の批判は、モデル精度の誘引的説明の台頭につながっている。
そのような場合、単一の帰納的説明を提供することは不十分であり、一方、有効な帰納的説明を提供することは、その大きさのため理解できない。
本稿では,協調ゲーム理論のパワー指標に基づく2つのアグリゲーション法と,因果強度のよく知られた尺度に基づく3番目の方法を提案する。
- 参考スコア(独自算出の注目度): 13.277544022717404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent criticisms of the robustness of post hoc model approximation
explanation methods (like LIME and SHAP) have led to the rise of model-precise
abductive explanations. For each data point, abductive explanations provide a
minimal subset of features that are sufficient to generate the outcome. While
theoretically sound and rigorous, abductive explanations suffer from a major
issue -- there can be several valid abductive explanations for the same data
point. In such cases, providing a single abductive explanation can be
insufficient; on the other hand, providing all valid abductive explanations can
be incomprehensible due to their size. In this work, we solve this issue by
aggregating the many possible abductive explanations into feature importance
scores. We propose three aggregation methods: two based on power indices from
cooperative game theory and a third based on a well-known measure of causal
strength. We characterize these three methods axiomatically, showing that each
of them uniquely satisfies a set of desirable properties. We also evaluate them
on multiple datasets and show that these explanations are robust to the attacks
that fool SHAP and LIME.
- Abstract(参考訳): ポストホックモデル近似法(LIMEやSHAPなど)のロバスト性に対する最近の批判は、モデル精度の導出的説明の台頭につながっている。
データポイントごとに、帰納的説明は結果を生成するのに十分な機能の最小限のサブセットを提供する。
理論上、健全で厳格な、誘惑的な説明は大きな問題に悩まされるが、同じデータポイントに対していくつかの有効な誘惑的な説明がある。
そのような場合、単一の帰納的説明を提供することは不十分であり、一方、有効な帰納的説明を提供することは、その大きさのため理解できない。
本研究では,この課題を,多量の帰納的説明を特徴量スコアに集約することで解決する。
本研究では,協調ゲーム理論のパワー指標に基づく2つの集計法と,既知の因果強度尺度に基づく3つの集計法を提案する。
これら3つの手法を公理的に特徴づけ、それぞれが一意に望ましい性質の集合を満たすことを示す。
また、複数のデータセット上で評価し、これらの説明がSHAPやLIMEを騙す攻撃に対して堅牢であることを示す。
関連論文リスト
- Counterfactual explainability of black-box prediction models [4.14360329494344]
ブラックボックス予測モデルに対する対実的説明可能性という新しい概念を提案する。
対物的説明可能性には3つの大きな利点がある。
論文 参考訳(メタデータ) (2024-11-03T16:29:09Z) - Evaluating the Robustness of Interpretability Methods through
Explanation Invariance and Equivariance [72.50214227616728]
解釈可能性法は、それらの説明が説明されたモデルを忠実に記述した場合にのみ有用である。
特定の対称性群の下で予測が不変であるニューラルネットワークを考える。
論文 参考訳(メタデータ) (2023-04-13T17:59:03Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Explaining Causal Models with Argumentation: the Case of Bi-variate
Reinforcement [15.947501347927687]
因果モデルから議論フレームワーク(AF)を生成するための概念化を導入する。
この概念化は、AFの意味論の望ましい性質を説明型として再解釈することに基づいている。
我々はこれらの論証的説明の理論的評価を行い、それらが望ましい説明的および論証的特性の範囲を満たすかどうかを検討する。
論文 参考訳(メタデータ) (2022-05-23T19:39:51Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - On Shapley Credit Allocation for Interpretability [1.52292571922932]
学習モデルの判断を解釈する際に適切な質問を行うことの重要性を強調する。
本稿では,Shapley symmetrizationの特徴関数として,解釈の異なる性質と異なる尺度を織り込むことによって特徴関連性を定量化する。
論文 参考訳(メタデータ) (2020-12-10T08:25:32Z) - Towards Interpretable Reasoning over Paragraph Effects in Situation [126.65672196760345]
我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
論文 参考訳(メタデータ) (2020-10-03T04:03:52Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
本研究は,特徴の相違する情報と相関する概念の問題点について考察する。
観測されていない変数の影響をモデル化するための新しい因果前グラフを提案する。
提案手法は,概念が完成していない場合に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T15:42:46Z) - High Dimensional Model Explanations: an Axiomatic Approach [14.908684655206494]
複雑なブラックボックス機械学習モデルは、重要な意思決定領域で頻繁に使用される。
特徴部分集合の結合効果をキャプチャする新しい高次元モデル説明法を提案する。
論文 参考訳(メタデータ) (2020-06-16T07:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。