論文の概要: Resolving gas bubbles ascending in liquid metal from low-SNR neutron
radiography images
- arxiv url: http://arxiv.org/abs/2109.04883v1
- Date: Wed, 8 Sep 2021 00:35:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-13 13:21:08.808030
- Title: Resolving gas bubbles ascending in liquid metal from low-SNR neutron
radiography images
- Title(参考訳): 低SNR中性子ラジオグラフィーによる液体金属中のガス気泡の分解
- Authors: Mihails Birjukovs, Pavel Trtik, Anders Kaestner, Jan Hovind, Martins
Klevs, Knud Thomsen, Andris Jakovics
- Abstract要約: 動的中性子ラジオグラフィー画像から液体金属を透過するガス気泡を除去する新しい画像処理手法を提案する。
画像前処理、デノイング、バブルセグメンテーションは、実用的な推奨事項とともに詳細に記述されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a new image processing methodology for resolving gas bubbles
travelling through liquid metal from dynamic neutron radiography images with
intrinsically low signal-to-noise ratio. Image pre-processing, denoising and
bubble segmentation are described in detail, with practical recommendations.
Experimental validation is presented - stationary and moving reference bodies
with neutron-transparent cavities are radiographed with imaging conditions
similar to the cases with bubbles in liquid metal. The new methods are applied
to our experimental data from previous and recent imaging campaigns, and the
performance of the methods proposed in this paper is compared against our
previously developed methods. Significant improvements are observed as well as
the capacity to reliably extract physically meaningful information from
measurements performed under highly adverse imaging conditions. The showcased
image processing solution and separate elements thereof are readily extendable
beyond the present application, and have been made open-source.
- Abstract(参考訳): 動的中性子ラジオグラフィ画像から液体金属中を進行するガス気泡を内在的に低信号対雑音比で解く新しい画像処理手法を示す。
画像の前処理、雑音除去、気泡分割について、実用的な推奨とともに詳細に述べる。
中性子透過性空洞を有する静止および移動基準体は、液体金属中の気泡と似た撮像条件でラジオグラフ化される。
本研究は,過去および最近のイメージングキャンペーンから得られた実験データに新しい手法を適用し,本研究で提案した手法の性能を従来の手法と比較した。
また,高感度撮像条件下で行った測定から物理的に有意な情報を確実に抽出する能力も向上した。
提示された画像処理ソリューションとその分離要素は、現在のアプリケーションを超えて容易に拡張可能であり、オープンソースにされている。
関連論文リスト
- Ultrasound Image Enhancement with the Variance of Diffusion Models [7.360352432782388]
超音波画像の強調にはコントラスト、解像度、スペックル保存の微妙なバランスが必要である。
本稿では,適応ビームフォーミングと拡散型分散イメージングを併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T17:29:33Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - Image Denoising and the Generative Accumulation of Photons [63.14988413396991]
我々は,次の光子がどこに到着できるかを予測するために訓練されたネットワークが,実際に最小平均二乗誤差(MMSE)を解くことを示している。
自己監督型認知のための新しい戦略を提案する。
本稿では,画像に少量の光子を反復的にサンプリングし,付加することにより,可能な解の後方からサンプリングする新しい方法を提案する。
論文 参考訳(メタデータ) (2023-07-13T08:03:32Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
蛍光顕微鏡で得られた生きた試料の画像の空間分解能は、可視光の回折により物理的に制限される。
この制限を克服するために、いくつかのデコンボリューションと超解像技術が提案されている。
論文 参考訳(メタデータ) (2023-03-20T15:43:52Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Hierarchical Disentangled Representation for Invertible Image Denoising
and Beyond [14.432771193620702]
画像の高周波部分にノイズが現れる傾向にあるという潜在観測に着想を得て,完全可逆復調法を提案する。
ノイズ画像は、可逆変換により、清浄な低周波およびハイブリッドな高周波部品に分解する。
このように、ノイズのない低周波部品と高周波部品とを逆にマージして、デノナイジングをトラクタブルにする。
論文 参考訳(メタデータ) (2023-01-31T01:24:34Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - Effective statistical fringe removal algorithm for high-sensitivity
imaging of ultracold atoms [3.4521385239788813]
超低温原子の吸収イメージングのための高度な外周除去アルゴリズムを示す。
少数のサンプル画像を用いて、不要なフリンジパターンを効率的に抑制する。
論文 参考訳(メタデータ) (2020-02-24T03:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。