論文の概要: PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data
Streams
- arxiv url: http://arxiv.org/abs/2109.05013v1
- Date: Fri, 10 Sep 2021 17:50:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-13 13:38:42.013884
- Title: PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data
Streams
- Title(参考訳): PWPAE: IoTデータストリームにおけるコンセプトドリフト適応のためのアンサンブルフレームワーク
- Authors: Li Yang, Dimitrios Michael Manias, Abdallah Shami
- Abstract要約: 本稿では,IoTデータストリーム分析による適応型IoT異常検出のためのPWPAE(Performance Weighted Probability Averaging Ensemble)フレームワークを提案する。
2つの公開データセットを用いた実験により,提案手法の有効性を最先端手法と比較した。
- 参考スコア(独自算出の注目度): 9.953967527396316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the number of Internet of Things (IoT) devices and systems have surged,
IoT data analytics techniques have been developed to detect malicious
cyber-attacks and secure IoT systems; however, concept drift issues often occur
in IoT data analytics, as IoT data is often dynamic data streams that change
over time, causing model degradation and attack detection failure. This is
because traditional data analytics models are static models that cannot adapt
to data distribution changes. In this paper, we propose a Performance Weighted
Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly
detection through IoT data stream analytics. Experiments on two public datasets
show the effectiveness of our proposed PWPAE method compared against
state-of-the-art methods.
- Abstract(参考訳): IoT(Internet of Things)デバイスやシステムが急増するにつれて、悪意のあるサイバー攻撃やセキュアなIoTシステムを検出するために、IoTデータ分析技術が開発されている。
これは、従来のデータ分析モデルは、データ分散変更に適応できない静的モデルであるからである。
本稿では,IoTデータストリーム分析を用いた適応型IoT異常検出のためのPWPAE(Performance Weighted Probability Averaging Ensemble)フレームワークを提案する。
2つの公開データセットにおける実験により,提案手法の有効性が実証された。
関連論文リスト
- Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
IoT(Internet of Things)は、物理デバイスとデジタル領域の間の変換接続を基盤としている。
従来のDDoS緩和アプローチは、IoTエコシステムの複雑さを扱うには不十分である。
本稿では、フェデレートラーニングの力を活用して、IoTネットワークのDDoS攻撃に対するセキュリティを強化する革新的な戦略を紹介する。
論文 参考訳(メタデータ) (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
侵入検知システム(IDS)は、悪意のある攻撃から何十億ものIoTデバイスを保護する上で重要な役割を果たす。
本稿では,CTVAE(Constrained Twin Variational Auto-Encoder)と呼ばれる新しいディープニューラルネットワーク/アーキテクチャを提案する。
CTVAEは、最先端の機械学習および表現学習方法と比較して、精度と検出攻撃におけるFscoreの約1%を向上することができる。
論文 参考訳(メタデータ) (2023-12-05T04:42:04Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
一般化性を重視したIoTネットワーク攻撃をモデル化するアプローチを提案する。
まず,機能抽出のための転がり窓のアプローチを改良し,オーバーフィッティングを低減した多段階機能選択プロセスを提案する。
次に、独立したトレインとテストデータセットを使用してモデルを構築し、テストする。
第3に、機械学習モデル、評価指標、データセットの多様なポートフォリオを使用して、方法論を厳格に評価する。
論文 参考訳(メタデータ) (2023-10-17T21:46:43Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
AIベースの侵入検知システム(IDS)を分散IoTシステムに実装する一般的なアプローチは、中央集権的な方法である。
このアプローチはデータのプライバシを侵害し、IDSのスケーラビリティを禁止します。
我々は、実世界の実験代表を設計し、FLベースのIDSの性能を評価する。
論文 参考訳(メタデータ) (2023-06-05T09:08:24Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - A Lightweight Concept Drift Detection and Adaptation Framework for IoT
Data Streams [11.411196708408887]
最適化されたLightGBMとコンセプトドリフト適応に基づく,異常検出のための適応型IoTストリーミングデータ分析フレームワークを提案する。
2つの公開データセットの実験は、提案した適応型LightGBMモデルの精度と効率を示す。
論文 参考訳(メタデータ) (2021-04-21T13:41:41Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。