論文の概要: Enhancing IoT Security Against DDoS Attacks through Federated Learning
- arxiv url: http://arxiv.org/abs/2403.10968v1
- Date: Sat, 16 Mar 2024 16:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 20:46:34.657618
- Title: Enhancing IoT Security Against DDoS Attacks through Federated Learning
- Title(参考訳): フェデレートラーニングによるDDoS攻撃に対するIoTセキュリティの強化
- Authors: Ghazaleh Shirvani, Saeid Ghasemshirazi, Mohammad Ali Alipour,
- Abstract要約: IoT(Internet of Things)は、物理デバイスとデジタル領域の間の変換接続を基盤としている。
従来のDDoS緩和アプローチは、IoTエコシステムの複雑さを扱うには不十分である。
本稿では、フェデレートラーニングの力を活用して、IoTネットワークのDDoS攻撃に対するセキュリティを強化する革新的な戦略を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid proliferation of the Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm. Nonetheless, the escalating threat of Distributed Denial of Service (DDoS) attacks jeopardizes the integrity and reliability of IoT networks. Conventional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems, potentially compromising data privacy. This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning that allows multiple IoT devices or edge nodes to collaboratively build a global model while preserving data privacy and minimizing communication overhead. The research aims to investigate Federated Learning's effectiveness in detecting and mitigating DDoS attacks in IoT. Our proposed framework leverages IoT devices' collective intelligence for real-time attack detection without compromising sensitive data. This study proposes innovative deep autoencoder approaches for data dimensionality reduction, retraining, and partial selection to enhance the performance and stability of the proposed model. Additionally, two renowned aggregation algorithms, FedAvg and FedAvgM, are employed in this research. Various metrics, including true positive rate, false positive rate, and F1-score, are employed to evaluate the model. The dataset utilized in this research, N-BaIoT, exhibits non-IID data distribution, where data categories are distributed quite differently. The negative impact of these distribution disparities is managed by employing retraining and partial selection techniques, enhancing the final model's stability. Furthermore, evaluation results demonstrate that the FedAvgM aggregation algorithm outperforms FedAvg, indicating that in non-IID datasets, FedAvgM provides better stability and performance.
- Abstract(参考訳): IoT(Internet of Things)の急速な普及は、物理デバイスとデジタル領域の間の変換接続を後押ししている。
それでも、DDoS(Distributed Denial of Service)攻撃のエスカレートする脅威は、IoTネットワークの完全性と信頼性を危険にさらしている。
従来型のDDoS緩和アプローチは、IoTエコシステムの複雑さに対処するには不適であり、データのプライバシを損なう可能性がある。
本稿では,複数のIoTデバイスやエッジノードがデータプライバシを保持し,通信オーバヘッドを最小限に抑えながら,グローバルモデルを協調的に構築できるフェデレートラーニングの力を活用して,IoTネットワークのDDoS攻撃に対するセキュリティを強化する,革新的な戦略を紹介する。
この研究は、IoTにおけるDDoS攻撃の検出と緩和におけるフェデレートラーニングの有効性を調査することを目的としている。
提案するフレームワークは,IoTデバイスの集合的インテリジェンスを,センシティブなデータを妥協することなくリアルタイムな攻撃検出に活用する。
本研究では,データ次元の低減,再学習,部分選択のための革新的なディープオートエンコーダ手法を提案する。
さらに、この研究には2つの有名な集約アルゴリズム、FedAvgとFedAvgMが採用されている。
モデルを評価するために、真正レート、偽正レート、F1スコアを含む様々な指標が使用される。
この研究で利用されるデータセットであるN-BaIoTは、データカテゴリが全く異なる方法で分散される非IIDデータ分布を示す。
これらの分布格差の負の影響は、再学習と部分選択技術を用いて、最終モデルの安定性を高めることによって管理される。
さらに,FedAvgMアグリゲーションアルゴリズムはFedAvgよりも優れており,非IIDデータセットではFedAvgMの方が安定性と性能が向上していることを示す。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - A Comparative Analysis of Machine Learning Models for DDoS Detection in IoT Networks [0.0]
通常のネットワークトラフィックからのDDoS攻撃の検出において、XGBoostのようなさまざまな機械学習モデルの有効性を評価する。
これらのモデルの有効性は分析され、機械学習がIoTセキュリティフレームワークを大幅に強化する方法が示されている。
論文 参考訳(メタデータ) (2024-11-08T12:23:41Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
さまざまな分野にわたるIoT(Internet of Things)デバイスは、深刻なネットワークセキュリティ上の懸念をエスカレートしている。
サイバー攻撃分類のための従来の機械学習(ML)ベースの侵入検知システム(IDS)は、IoTデバイスからトラフィック分析のための集中サーバへのデータ送信を必要とし、深刻なプライバシー上の懸念を引き起こす。
我々はFedMADEという新しい動的アグリゲーション手法を紹介した。この手法はデバイスをトラフィックパターンによってクラスタリングし、その全体的なパフォーマンスに対する貢献に基づいてローカルモデルを集約する。
論文 参考訳(メタデータ) (2024-08-13T18:42:34Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
AIベースの侵入検知システム(IDS)を分散IoTシステムに実装する一般的なアプローチは、中央集権的な方法である。
このアプローチはデータのプライバシを侵害し、IDSのスケーラビリティを禁止します。
我々は、実世界の実験代表を設計し、FLベースのIDSの性能を評価する。
論文 参考訳(メタデータ) (2023-06-05T09:08:24Z) - Poisoning Attacks in Federated Edge Learning for Digital Twin 6G-enabled
IoTs: An Anticipatory Study [37.97034388920841]
フェデレーションエッジ学習は、デジタルツインの6G対応モノのインターネット(IoT)環境において、プライバシ保護、人工知能(AI)対応のアクティビティをサポートする上で不可欠である。
本稿では,デジタル双対6G対応IoT環境におけるフェデレーションエッジ学習における中毒攻撃の予測研究を提案する。
論文 参考訳(メタデータ) (2023-03-21T11:12:17Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
本稿では,流通戦略の再考を通じて協調的深層推論の安全性を目標とするアプローチを提案する。
我々は、この手法を最適化として定式化し、コ推論のレイテンシとプライバシーレベルのデータのトレードオフを確立する。
論文 参考訳(メタデータ) (2022-08-27T14:50:00Z) - On Lightweight Privacy-Preserving Collaborative Learning for Internet of
Things by Independent Random Projections [40.586736738492384]
モノのインターネット(IoT)は、より良いシステムインテリジェンスを実現する主要なデータ生成インフラストラクチャになります。
本稿では,プライバシ保護型協調学習方式の設計と実装について考察する。
好奇心強い学習コーディネータは、多くのIoTオブジェクトが提供したデータサンプルに基づいて、よりよい機械学習モデルをトレーニングする。
論文 参考訳(メタデータ) (2020-12-11T12:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。