PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data
Streams
- URL: http://arxiv.org/abs/2109.05013v1
- Date: Fri, 10 Sep 2021 17:50:49 GMT
- Title: PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data
Streams
- Authors: Li Yang, Dimitrios Michael Manias, Abdallah Shami
- Abstract summary: We propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics.
Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.
- Score: 9.953967527396316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the number of Internet of Things (IoT) devices and systems have surged,
IoT data analytics techniques have been developed to detect malicious
cyber-attacks and secure IoT systems; however, concept drift issues often occur
in IoT data analytics, as IoT data is often dynamic data streams that change
over time, causing model degradation and attack detection failure. This is
because traditional data analytics models are static models that cannot adapt
to data distribution changes. In this paper, we propose a Performance Weighted
Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly
detection through IoT data stream analytics. Experiments on two public datasets
show the effectiveness of our proposed PWPAE method compared against
state-of-the-art methods.
Related papers
- Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
arXiv Detail & Related papers (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks.
This article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE)
CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods.
arXiv Detail & Related papers (2023-12-05T04:42:04Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
We present an approach for modelling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance.
First, we present an improved rolling window approach for feature extraction, and introduce a multi-step feature selection process that reduces overfitting.
Second, we build and test models using isolated train and test datasets, thereby avoiding common data leaks.
Third, we rigorously evaluate our methodology using a diverse portfolio of machine learning models, evaluation metrics and datasets.
arXiv Detail & Related papers (2023-10-17T21:46:43Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
A common approach to implementing AI-based Intrusion Detection systems (IDSs) in distributed IoT systems is in a centralised manner.
This approach may violate data privacy and prohibit IDS scalability.
We design an experiment representative of the real world and evaluate the performance of an FL-based IDS.
arXiv Detail & Related papers (2023-06-05T09:08:24Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A Lightweight Concept Drift Detection and Adaptation Framework for IoT
Data Streams [11.411196708408887]
We propose an adaptive IoT streaming data analytics framework for anomaly detection use cases based on optimized LightGBM and concept drift adaptation.
Experiments on two public datasets show the high accuracy and efficiency of our proposed adaptive LightGBM model.
arXiv Detail & Related papers (2021-04-21T13:41:41Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.