論文の概要: A Complex Constrained Total Variation Image Denoising Algorithm with
Application to Phase Retrieval
- arxiv url: http://arxiv.org/abs/2109.05496v1
- Date: Sun, 12 Sep 2021 11:48:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 15:23:47.094187
- Title: A Complex Constrained Total Variation Image Denoising Algorithm with
Application to Phase Retrieval
- Title(参考訳): 複雑な制約付き全変動画像除算アルゴリズムと位相検索への応用
- Authors: Yunhui Gao, Liangcai Cao
- Abstract要約: 本稿では,複素数値画像に対する制約付き全変動(TV)復調問題について考察する。
異方性と異方性の両方に2種類の複素テレビを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the constrained total variation (TV) denoising problem
for complex-valued images. We extend the definition of TV seminorms for
real-valued images to dealing with complex-valued ones. In particular, we
introduce two types of complex TV in both isotropic and anisotropic forms. To
solve the constrained denoising problem, we adopt a dual approach and derive an
accelerated gradient projection algorithm. We further generalize the proposed
denoising algorithm as a key building block of the proximal gradient scheme to
solve a vast class of complex constrained optimization problems with TV
regularizers. As an example, we apply the proposed algorithmic framework to
phase retrieval. We combine the complex TV regularizer with the conventional
projection-based method within the constraint complex TV model. Initial results
from both simulated and optical experiments demonstrate the validity of the
constrained TV model in extracting sparsity priors within complex-valued
images, while also utilizing physically tractable constraints that help speed
up convergence.
- Abstract(参考訳): 本稿では,複素数値画像に対する制約付き全変動(TV)復調問題について考察する。
我々は,実数値画像に対するテレビセミノルムの定義を,複素数値画像を扱うように拡張する。
特に, 等方性と異方性の両方において, 2種類の複合テレビを導入する。
制約付き denoising 問題を解くために、双対アプローチを採用し、加速勾配予測アルゴリズムを導出する。
さらに,テレビレギュレータを用いた複雑な制約付き最適化問題を解くために,提案アルゴリズムを近位勾配方式の鍵構築ブロックとして一般化する。
一例として,提案手法を位相探索に適用する。
制約付きテレビモデルにおいて, 複素tv正規化器と従来の投影方式を組み合わせた。
シミュレーション実験と光学実験の両方からの最初の結果は、複素値画像内のスパーシティ優先抽出における制約付きテレビモデルの妥当性を示し、また収束を早めるために物理的に扱いやすい制約も活用している。
関連論文リスト
- ERD: Exponential Retinex decomposition based on weak space and hybrid nonconvex regularization and its denoising application [3.9304843171575112]
Retinex理論は、画像を照明とノイズ成分のセグメンテーションとしてモデル化する。
画像復調のための指数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-11T13:34:37Z) - Weighted structure tensor total variation for image denoising [0.5120567378386615]
画像復号化問題に対して、構造テンソル全変量モデル(STV)は、他の競合する正規化手法と比較して優れた性能を示す。
異方性全変動(ATV)モデルに導入された異方性重み付き行列を用いてSTVモデルを改善する。
提案する重み付きSTVモデルは,画像からローカル情報を効果的に取得し,復調過程において詳細を維持できる。
論文 参考訳(メタデータ) (2023-06-18T05:37:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Cross-boosting of WNNM Image Denoising method by Directional Wavelet
Packets [2.7648976108201815]
本稿では、方向性準解析ウェーブレットパケット(qWP)と最先端の重み付き核ノルム最小化法(WNNM)を併用した画像復号方式を提案する。
提案手法では, 粗悪な画像においても, エッジや微細なテクスチャパターンをキャプチャするqWPdn機能を結合する。
論文 参考訳(メタデータ) (2022-06-09T11:37:46Z) - Equivariance Regularization for Image Reconstruction [5.025654873456756]
不完全な測定条件下での画像逆問題に対する構造適応正則化手法を提案する。
この正規化スキームは、測定の物理学における同変構造を利用して、逆問題の不当な位置を緩和する。
提案手法は,古典的な一階最適化アルゴリズムとともに,プラグ・アンド・プレイ方式で適用することができる。
論文 参考訳(メタデータ) (2022-02-10T14:38:08Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - A Weighted Difference of Anisotropic and Isotropic Total Variation for
Relaxed Mumford-Shah Color and Multiphase Image Segmentation [2.6381163133447836]
異方性および等方性の全変動の差を考慮した一括一括画像分割モデルを提案する。
また,カラー画像のセグメンテーションへの一般化についても論じる。
論文 参考訳(メタデータ) (2020-05-09T09:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。