Preparing exact eigenstates of the open XXZ chain on a quantum computer
- URL: http://arxiv.org/abs/2109.05607v2
- Date: Thu, 23 Dec 2021 19:20:32 GMT
- Title: Preparing exact eigenstates of the open XXZ chain on a quantum computer
- Authors: John S. Van Dyke, Edwin Barnes, Sophia E. Economou, Rafael I.
Nepomechie
- Abstract summary: We formulate a quantum algorithm for preparing Bethe states of this model, corresponding to real solutions of the Bethe equations.
The algorithm is probabilistic, with a success probability that decreases with the number of down spins.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is
the paradigmatic example of a quantum integrable model with open boundary
conditions. We formulate a quantum algorithm for preparing Bethe states of this
model, corresponding to real solutions of the Bethe equations. The algorithm is
probabilistic, with a success probability that decreases with the number of
down spins. For a Bethe state of $L$ spins with $M$ down spins, which contains
a total of $\binom{L}{M}\, 2^{M}\, M!$ terms, the algorithm requires $L+M^2+2M$
qubits.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - From spin squeezing to fast state discrimination [0.0]
A class of entangled states are spin-squeezed states of $N$ two-level atoms.
We show that atomic interactions generate a nonlinear evolution that shears the state's probability density.
The resulting nonlinearity is known to be a powerful resource in quantum computation.
arXiv Detail & Related papers (2024-10-29T13:30:29Z) - Deterministic Bethe state preparation [0.0]
We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer.
The algorithm is deterministic, does not require ancillary qubits, and does not require QR decompositions.
arXiv Detail & Related papers (2024-03-05T19:31:25Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - The classical limit of Quantum Max-Cut [0.18416014644193066]
We show that the limit of large quantum spin $S$ should be understood as a semiclassical limit.
We present two families of classical approximation algorithms for $mathrmQMaxCut_S$ based on rounding the output of a semidefinite program to a product of Bloch coherent states.
arXiv Detail & Related papers (2024-01-23T18:53:34Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A Quadratic Speedup in Finding Nash Equilibria of Quantum Zero-Sum Games [102.46640028830441]
We introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $mathcalO(d/epsilon)$ to $epsilon$-Nash equilibria.
This quadratic speed-up sets a new benchmark for computing $epsilon$-Nash equilibria in quantum zero-sum games.
arXiv Detail & Related papers (2023-11-17T20:38:38Z) - Predicting Gibbs-State Expectation Values with Pure Thermal Shadows [1.4050836886292868]
We propose a quantum algorithm that can predict $M$ linear functions of an arbitrary Gibbs state with only $mathcalO(logM)$ experimental measurements.
We show that the algorithm can be successfully employed as a subroutine for training an eight-qubit fully connected quantum Boltzmann machine.
arXiv Detail & Related papers (2022-06-10T18:00:08Z) - Quantum Approximate Counting for Markov Chains and Application to
Collision Counting [0.0]
We show how to generalize the quantum approximate counting technique developed by Brassard, Hoyer and Tapp [ICALP 1998] to estimating the number of marked states of a Markov chain.
This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful "quantum walk based search" framework established by Magniez, Nayak, Roland and Santha.
arXiv Detail & Related papers (2022-04-06T03:04:42Z) - Algebraic Bethe Circuits [58.720142291102135]
We bring the Algebraic Bethe Ansatz (ABA) into unitary form, for its direct implementation on a quantum computer.
Our algorithm is deterministic and works for both real and complex roots of the Bethe equations.
We derive a new form of the Yang-Baxter equation using unitary matrices, and also verify it on a quantum computer.
arXiv Detail & Related papers (2022-02-09T19:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.