Floquet engineering and simulating exceptional rings with a quantum spin
system
- URL: http://arxiv.org/abs/2005.02703v3
- Date: Fri, 4 Dec 2020 10:40:09 GMT
- Title: Floquet engineering and simulating exceptional rings with a quantum spin
system
- Authors: Peng He, Ze-Hao Huang
- Abstract summary: Time-periodic driving in the form of coherent radiation provides powerful tool for the manipulation of topological materials or synthetic quantum matter.
We propose a scheme to realize non-Hermitian semimetals exhibiting exceptional rings in the spectra through Floquet engineering.
- Score: 6.746560936185888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-periodic driving in the form of coherent radiation provides powerful
tool for the manipulation of topological materials or synthetic quantum matter.
In this paper we propose a scheme to realize non-Hermitian semimetals
exhibiting exceptional rings in the spectra through Floquet engineering. A
transition from a concentric pair of the rings to a dipolar pair is observed.
The concentric pair carries only a quantized Berry phase while the dipolar pair
possesses opposite Chern numbers in addition, signaling a topological Lifshitz
transition of the Fermi surface. The transport properties of the system are
addressed, and we find that this transition process is accompanied by the
emergency of a nontrivial Hall conductivity. Furthermore, we explore the
quantum simulation of non-Hermitian semimetals with a quantum spin system and
the characterization of the topology via the long-time dynamics.
Related papers
- Revealing the Berry phase under the tunneling barrier [0.0]
In quantum mechanics, a quantum wavepacket may acquire a geometrical phase as it evolves.
In condensed matter systems, the Berry phase plays a crucial role in fundamental phenomena.
We observe a complex-valued Berry phase via strong field light matter interactions in condensed matter systems.
arXiv Detail & Related papers (2024-08-06T11:18:04Z) - Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Coherent excitation transport through ring-shaped networks [0.0]
coherent quantum transport of matter wave through a ring-shaped circuit attached to leads defines an iconic system in mesoscopic physics.
We study the source-to-drain transport of excitations going through a ring-network, without propagation of matter waves.
arXiv Detail & Related papers (2023-10-27T08:31:20Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Chiral Cavity Quantum Electrodynamics [0.0]
We explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice.
We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon.
arXiv Detail & Related papers (2021-09-09T22:26:36Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.