Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling
- URL: http://arxiv.org/abs/2109.06407v1
- Date: Tue, 14 Sep 2021 02:47:51 GMT
- Title: Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling
- Authors: Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, Ufuk Topcu
- Abstract summary: We develop a framework to learn dynamics models from trajectory data.
We place constraints on the values of the outputs and the internal states of the model.
We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems.
- Score: 19.399031618628864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective inclusion of physics-based knowledge into deep neural network
models of dynamical systems can greatly improve data efficiency and
generalization. Such a-priori knowledge might arise from physical principles
(e.g., conservation laws) or from the system's design (e.g., the Jacobian
matrix of a robot), even if large portions of the system dynamics remain
unknown. We develop a framework to learn dynamics models from trajectory data
while incorporating a-priori system knowledge as inductive bias. More
specifically, the proposed framework uses physics-based side information to
inform the structure of the neural network itself, and to place constraints on
the values of the outputs and the internal states of the model. It represents
the system's vector field as a composition of known and unknown functions, the
latter of which are parametrized by neural networks. The physics-informed
constraints are enforced via the augmented Lagrangian method during the model's
training. We experimentally demonstrate the benefits of the proposed approach
on a variety of dynamical systems -- including a benchmark suite of robotics
environments featuring large state spaces, non-linear dynamics, external
forces, contact forces, and control inputs. By exploiting a-priori system
knowledge during training, the proposed approach learns to predict the system
dynamics two orders of magnitude more accurately than a baseline approach that
does not include prior knowledge, given the same training dataset.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which can describe most multi-physics systems.
We propose Physically Consistent NODEs (PC-NODEs) to learn parameters from data.
We demonstrate the effectiveness of the proposed method by learning the thermodynamics of a building from the real-world measurements.
arXiv Detail & Related papers (2022-11-11T11:20:35Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.