On-demand source of dual-rail photon pairs based on chiral interaction
in a nanophotonic waveguide
- URL: http://arxiv.org/abs/2109.03519v2
- Date: Mon, 17 Jan 2022 15:43:33 GMT
- Title: On-demand source of dual-rail photon pairs based on chiral interaction
in a nanophotonic waveguide
- Authors: Freja T. {\O}stfeldt, Eva M. Gonz\'alez-Ruiz, Nils Hauff, Ying Wang,
Andreas D. Wieck, Arne Ludwig, R\"udiger Schott, Leonardo Midolo, Anders S.
S{\o}rensen, Ravitej Uppu and Peter Lodahl
- Abstract summary: Entanglement is the fuel of advanced quantum technology.
In photonics, entanglement has traditionally been generated probabilistically.
We propose and experimentally realize an on-demand source of dual-rail photon pairs.
- Score: 2.3776015607838747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement is the fuel of advanced quantum technology. It is for instance
consumed in measurement-based quantum computing and allows loss-tolerant
encoding of quantum information. In photonics, entanglement has traditionally
been generated probabilistically, requiring massive multiplexing for scaling up
to many photons. An alternative approach utilizes quantum emitters in
nanophotonic devices for deterministic generation of single photons, which an
be extended to two- and multi-photon generation on demand. The proposed
polarization-entanglement sources are, however, incompatible with spatial
dual-rail qubit encoding, which is preferred in photonic quantum computing
realized in scalable integrated photonic circuits. Here we propose and
experimentally realize an on-demand source of dual-rail photon pairs using a
quantum dot in a planar nanophotonic waveguide. The source exploits the
cascaded decay of a biexciton state and chiral light-matter coupling to achieve
deterministic generation of spatial dual-rail Bell pairs with the amount of
entanglement determined by the chirality. The operational principle can readily
be extended to multi-photon entanglement generation, and such sources may be
interfaced with advanced photonic-integrated circuits, e.g., for efficient
preparation of entanglement resource states for photonic quantum computing.
Related papers
- Photonic quantum computing on thin-film lithium niobate: Part I Design
of an efficient heralded single photon source co-integrated with
superconducting detectors [0.0]
Photonic quantum computers are one of the primary candidates for fault-tolerant quantum computation.
To build a practical quantum computer, thousands to millions of such sources are required.
We propose a unique single-photon source design on a thin-film lithium niobate platform co-integrated with superconducting nanowire single-photon detectors.
arXiv Detail & Related papers (2023-11-15T21:51:12Z) - Deterministic generation of arbitrary n-photon states in an integrated
photonic system [0.0]
We propose a chip-integrable scheme to generate a group of n photons with very high fidelity based on the long-range collective interaction between the emitters mediated by the waveguide modes.
Our results can find important applications in the areas such as photonic-chip-based quantum information processing and quantum metrology.
arXiv Detail & Related papers (2023-05-17T01:24:11Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Multiplexed Single Photons from Deterministically Positioned Nanowire
Quantum Dots [0.0]
Solid-state quantum emitters are excellent sources of on-demand indistinguishable or entangled photons.
We present a scalable technique to multiplex streams of photons from multiple independent quantum dots, on-chip, into a fiber network for use off-chip.
arXiv Detail & Related papers (2020-05-11T18:10:59Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.