Nonlinearities in Steerable SO(2)-Equivariant CNNs
- URL: http://arxiv.org/abs/2109.06861v1
- Date: Tue, 14 Sep 2021 17:53:45 GMT
- Title: Nonlinearities in Steerable SO(2)-Equivariant CNNs
- Authors: Daniel Franzen, Michael Wand
- Abstract summary: We apply harmonic distortion analysis to illuminate the effect of nonlinearities on representations of SO(2).
We develop a novel FFT-based algorithm for computing representations of non-linearly transformed activations.
In experiments with 2D and 3D data, we obtain results that compare favorably to the state-of-the-art in terms of accuracy while continuous symmetry and exact equivariance.
- Score: 7.552100672006172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Invariance under symmetry is an important problem in machine learning. Our
paper looks specifically at equivariant neural networks where transformations
of inputs yield homomorphic transformations of outputs. Here, steerable CNNs
have emerged as the standard solution. An inherent problem of steerable
representations is that general nonlinear layers break equivariance, thus
restricting architectural choices. Our paper applies harmonic distortion
analysis to illuminate the effect of nonlinearities on Fourier representations
of SO(2). We develop a novel FFT-based algorithm for computing representations
of non-linearly transformed activations while maintaining band-limitation. It
yields exact equivariance for polynomial (approximations of) nonlinearities, as
well as approximate solutions with tunable accuracy for general functions. We
apply the approach to build a fully E(3)-equivariant network for sampled 3D
surface data. In experiments with 2D and 3D data, we obtain results that
compare favorably to the state-of-the-art in terms of accuracy while permitting
continuous symmetry and exact equivariance.
Related papers
- Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance.
symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted.
Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients.
arXiv Detail & Related papers (2023-10-09T20:22:43Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
Graphs [3.0603554929274908]
3D-related inductive biases are indispensable to graph neural networks operating on 3D atomistic graphs such as molecules.
Inspired by the success of Transformers in various domains, we study how to incorporate these inductive biases into Transformers.
We present Equiformer, a graph neural network leveraging the strength of Transformer architectures.
arXiv Detail & Related papers (2022-06-23T21:40:37Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - Relaxing Equivariance Constraints with Non-stationary Continuous Filters [20.74154804898478]
The proposed parameterization can be thought of as a building block to allow adjustable symmetry structure in neural networks.
Compared to non-equivariant or strict-equivariant baselines, we experimentally verify that soft equivariance leads to improved performance in terms of test accuracy on CIFAR-10 and CIFAR-100 image classification tasks.
arXiv Detail & Related papers (2022-04-14T18:08:36Z) - 3D Equivariant Graph Implicit Functions [51.5559264447605]
We introduce a novel family of graph implicit functions with equivariant layers that facilitates modeling fine local details.
Our method improves over the existing rotation-equivariant implicit function from 0.69 to 0.89 on the ShapeNet reconstruction task.
arXiv Detail & Related papers (2022-03-31T16:51:25Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Equivariant Point Network for 3D Point Cloud Analysis [17.689949017410836]
We propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis.
First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators.
Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features.
arXiv Detail & Related papers (2021-03-25T21:57:10Z) - Learning Equivariant Representations [10.745691354609738]
Convolutional neural networks (CNNs) are successful examples of this principle.
We propose equivariant models for different transformations defined by groups of symmetries.
These models leverage symmetries in the data to reduce sample and model complexity and improve generalization performance.
arXiv Detail & Related papers (2020-12-04T18:46:17Z) - SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks [71.55002934935473]
We introduce the SE(3)-Transformer, a variant of the self-attention module for 3D point clouds and graphs, which is equivariant under continuous 3D roto-translations.
We evaluate our model on a toy N-body particle simulation dataset, showcasing the robustness of the predictions under rotations of the input.
arXiv Detail & Related papers (2020-06-18T13:23:01Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.