論文の概要: DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles
- arxiv url: http://arxiv.org/abs/2109.07024v1
- Date: Tue, 14 Sep 2021 23:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 14:55:50.413274
- Title: DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles
- Title(参考訳): DPMPC-Planner:動的障害物を伴う複雑な静的環境のためのリアルタイムUAV軌道計画フレームワーク
- Authors: Zhefan Xu, Di Deng, Yiping Dong, Kenji Shimada
- Abstract要約: 安全なUAVナビゲーションは、複雑な環境構造、動的障害物、計測ノイズによる不確実性、予測不可能な移動障害物の挙動のために困難である。
本稿では,動的障害物を伴う複雑な静的環境を考慮した安全なナビゲーションを実現するための軌道計画フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.9462808515258462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe UAV navigation is challenging due to the complex environment structures,
dynamic obstacles, and uncertainties from measurement noises and unpredictable
moving obstacle behaviors. Although plenty of recent works achieve safe
navigation in complex static environments with sophisticated mapping
algorithms, such as occupancy map and ESDF map, these methods cannot reliably
handle dynamic environments due to the mapping limitation from moving
obstacles. To address the limitation, this paper proposes a trajectory planning
framework to achieve safe navigation considering complex static environments
with dynamic obstacles. To reliably handle dynamic obstacles, we divide the
environment representation into static mapping and dynamic object
representation, which can be obtained from computer vision methods. Our
framework first generates a static trajectory based on the proposed iterative
corridor shrinking algorithm. Then, reactive chance-constrained model
predictive control with temporal goal tracking is applied to avoid dynamic
obstacles with uncertainties. The simulation results in various environments
demonstrate the ability of our algorithm to navigate safely in complex static
environments with dynamic obstacles.
- Abstract(参考訳): 安全なUAVナビゲーションは、複雑な環境構造、動的障害物、計測ノイズによる不確実性、予測不可能な移動障害物の挙動のために困難である。
最近の多くの研究は、占有マップやESDFマップのような高度なマッピングアルゴリズムを用いて、複雑な静的環境における安全なナビゲーションを実現するが、移動障害からのマッピング制限のため、これらの手法は動的環境を確実に扱えない。
そこで本稿では,複雑な静的環境と動的障害を考慮した安全なナビゲーションを実現するための軌道計画フレームワークを提案する。
動的障害を確実に処理するために,我々は環境表現を静的マッピングと動的オブジェクト表現に分割する。
本フレームワークは,提案する反復的回廊縮小アルゴリズムに基づいて,まず静的軌道を生成する。
そして、時間的目標追跡による反応確率制約モデル予測制御を適用し、不確実性のある動的障害を回避する。
シミュレーションの結果,様々な環境において,動的障害のある複雑な静的環境において安全にナビゲートできることを示す。
関連論文リスト
- DynaVINS++: Robust Visual-Inertial State Estimator in Dynamic Environments by Adaptive Truncated Least Squares and Stable State Recovery [11.37707868611451]
我々はmboxtextitDynaVINS++と呼ばれる堅牢なVINSフレームワークを提案する。
我々のアプローチは、突然の動的オブジェクトを含む動的環境における有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-10-20T12:13:45Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
本稿では,動的障害物の追跡と軌道予測を組み合わせて,効率的な自律飛行を実現するビジョンベース計画システムを提案する。
シミュレーション環境と実環境環境の両方で実験を行い,本研究の結果から動的環境の障害物をリアルタイムに検出・回避することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-11-21T08:09:00Z) - A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera [7.77809394151497]
RGB-Dカメラを用いたクワッドコプター障害物回避のためのリアルタイム動的障害物追跡とマッピングシステムを提案する。
本手法は,動的環境における障害物をリアルタイムに追跡・表現することができ,障害物を安全に回避することができる。
論文 参考訳(メタデータ) (2022-09-17T05:32:33Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
本稿では,ロボットの車載視力を利用した勾配に基づくB-スプライン軌道最適化アルゴリズムを提案する。
提案手法は、まず円ベースのガイドポイントアルゴリズムを用いて、静的障害物を避けるためのコストと勾配を近似する。
視界検出された移動物体では, 動的衝突を防止するために, 反射・水平距離場が同時に使用される。
論文 参考訳(メタデータ) (2022-09-15T02:12:30Z) - STVGFormer: Spatio-Temporal Video Grounding with Static-Dynamic
Cross-Modal Understanding [68.96574451918458]
静的分岐と動的分岐を用いて視覚言語依存をモデル化するSTVGというフレームワークを提案する。
静的分岐と動的分岐は、クロスモーダルトランスとして設計されている。
提案手法は39.6%のvIoUを達成し,HC-STVGの第1位を獲得した。
論文 参考訳(メタデータ) (2022-07-06T15:48:58Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
本稿では,ニューラルネットワークによってパラメータ化される暗黙的値関数として,オブジェクト点群と相対的タスク軌跡の両方を符号化する新しいオブジェクト表現であるNeural Motion Fieldsを提案する。
このオブジェクト中心表現は、SE(3)空間上の連続分布をモデル化し、サンプリングベースのMPCを利用して、この値関数を最適化することで、反応的に把握することができる。
論文 参考訳(メタデータ) (2022-06-29T18:47:05Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object
Removal for Static 3D Point Cloud Map Building [0.1474723404975345]
本稿では,pSeudo Occupancy-based dynamic object Removal の ERASOR, Egocentric RAtio という新しい静的マップ構築手法を提案する。
私たちのアプローチは、必然的に地面と接触している都市環境における最もダイナミックなオブジェクトの性質にその注意を向けます。
論文 参考訳(メタデータ) (2021-03-07T10:29:07Z) - Learning Obstacle Representations for Neural Motion Planning [70.80176920087136]
学習の観点から,センサを用いたモーションプランニングに対処する。
近年の視覚認識の進歩により,運動計画における適切な表現の学習の重要性が議論されている。
本稿では,PointNetアーキテクチャに基づく新しい障害物表現を提案し,障害物回避ポリシーと共同で学習する。
論文 参考訳(メタデータ) (2020-08-25T17:12:32Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。