Channel Estimation for RIS-Assisted mmWave Systems via Diffusion Models
- URL: http://arxiv.org/abs/2506.07770v2
- Date: Wed, 23 Jul 2025 14:10:03 GMT
- Title: Channel Estimation for RIS-Assisted mmWave Systems via Diffusion Models
- Authors: Yang Wang, Yin Xu, Cixiao Zhang, Zhiyong Chen, Mingzeng Dai, Haiming Wang, Bingchao Liu, Dazhi He, Meixia Tao,
- Abstract summary: Reconfigurable intelligent surface (RIS) has been recognized as a promising technology for next-generation wireless communications.<n>The performance of RIS-assisted systems critically depends on accurate channel state information (CSI)<n>This letter proposes a novel channel estimation method for RIS-aided millimeter-wave (mmWave) systems based on diffusion models (DMs)
- Score: 32.962034180176865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable intelligent surface (RIS) has been recognized as a promising technology for next-generation wireless communications. However, the performance of RIS-assisted systems critically depends on accurate channel state information (CSI). To address this challenge, this letter proposes a novel channel estimation method for RIS-aided millimeter-wave (mmWave) systems based on diffusion models (DMs). Specifically, the forward diffusion process of the original signal is formulated to model the received signal as a noisy observation within the framework of DMs. Subsequently, the channel estimation task is formulated as the reverse diffusion process, and a sampling algorithm based on denoising diffusion implicit models (DDIMs) is developed to enable effective inference. Furthermore, a lightweight neural network, termed BRCNet, is introduced to replace the conventional U-Net, significantly reducing the number of parameters and computational complexity. Extensive experiments conducted under various scenarios demonstrate that the proposed method consistently outperforms existing baselines.
Related papers
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.<n>Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.<n>We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - SNR-EQ-JSCC: Joint Source-Channel Coding with SNR-Based Embedding and Query [40.61935046452048]
We propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC.<n>It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks.<n>Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR.
arXiv Detail & Related papers (2025-01-07T02:31:04Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems.
The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process.
We propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor.
arXiv Detail & Related papers (2024-05-09T19:45:49Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
Overfitting to the source domain is a common issue in gradient-based training of deep neural networks.
We propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters.
arXiv Detail & Related papers (2023-10-11T10:21:34Z) - A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems [11.190815358585137]
Joint channel estimation and signal detection is crucial in frequency division multiplexing systems.
Traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios.
Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain.
arXiv Detail & Related papers (2023-03-07T06:34:04Z) - Efficient Deep Unfolding for SISO-OFDM Channel Estimation [0.0]
It is possible to perform SISO-OFDM channel estimation using sparse recovery techniques.
In this paper, an unfolded neural network is used to lighten this constraint.
Its unsupervised online learning allows to learn the system's imperfections in order to enhance the estimation performance.
arXiv Detail & Related papers (2022-10-11T11:29:54Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.