Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling
- URL: http://arxiv.org/abs/2109.07211v1
- Date: Wed, 15 Sep 2021 11:00:18 GMT
- Title: Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling
- Authors: Jiamin Yu
- Abstract summary: This article examines the emerging technical difficulties, new ideas, and methods of risk modeling under autonomous driving scenarios.
It provides technical feasibility for realizing risk assessment and car insurance pricing under a computer simulation environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It has been for a long time to use big data of autonomous vehicles for
perception, prediction, planning, and control of driving. Naturally, it is
increasingly questioned why not using this big data for risk management and
actuarial modeling. This article examines the emerging technical difficulties,
new ideas, and methods of risk modeling under autonomous driving scenarios.
Compared with the traditional risk model, the novel model is more consistent
with the real road traffic and driving safety performance. More importantly, it
provides technical feasibility for realizing risk assessment and car insurance
pricing under a computer simulation environment.
Related papers
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles.
A risk indicator integrating surrounding vehicles weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions.
An indicator, potential collision energy in conflicts, is newly proposed to evaluate the performance of the developed AV driving strategy.
arXiv Detail & Related papers (2023-12-27T06:03:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Judge Me in Context: A Telematics-Based Driving Risk Prediction
Framework in Presence of Weak Risk Labels [1.52292571922932]
We use telematics data to build a risk prediction framework with real-world applications.
We employ a novel data-driven process to augment weak risk labels.
Results based on real-world data from multiple major cities in the United States demonstrate usefulness of the proposed framework.
arXiv Detail & Related papers (2023-05-05T02:21:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
We propose a comprehensive driving risk management framework named RCP-RF based on potential field theory under Connected and Automated Vehicles (CAV) environment.
Different from existing algorithms, the motion tendency between ego and obstacle cars and the pedestrian factor are legitimately considered in the proposed framework.
Empirical studies validate the superiority of our proposed framework against state-of-the-art methods on real-world dataset NGSIM and real AV platform.
arXiv Detail & Related papers (2023-05-04T01:54:37Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Mathematical Models of Human Drivers Using Artificial Risk Fields [8.074019565026544]
We use the concept of artificial risk fields to predict how human operators control a vehicle in response to upcoming road situations.
We observe that the risk fields are excellent at predicting future trajectory with high prediction accuracy for up to twenty seconds prediction horizons.
arXiv Detail & Related papers (2022-05-24T15:39:01Z) - Don't Get Yourself into Trouble! Risk-aware Decision-Making for
Autonomous Vehicles [4.94950858749529]
We show that risk could be characterized by two components: 1) the probability of an undesirable outcome and 2) an estimate of how undesirable the outcome is (loss)
We developed a risk-based decision-making framework for the autonomous vehicle that integrates the high-level risk-based path planning with the reinforcement learning-based low-level control.
This work can improve safety by allowing an autonomous vehicle to one day avoid and react to risky situations.
arXiv Detail & Related papers (2021-06-08T18:24:02Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.