Mathematical Models of Human Drivers Using Artificial Risk Fields
- URL: http://arxiv.org/abs/2205.12722v1
- Date: Tue, 24 May 2022 15:39:01 GMT
- Title: Mathematical Models of Human Drivers Using Artificial Risk Fields
- Authors: Emily Jensen, Maya Luster, Hansol Yoon, Brandon Pitts and Sriram
Sankaranarayanan
- Abstract summary: We use the concept of artificial risk fields to predict how human operators control a vehicle in response to upcoming road situations.
We observe that the risk fields are excellent at predicting future trajectory with high prediction accuracy for up to twenty seconds prediction horizons.
- Score: 8.074019565026544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we use the concept of artificial risk fields to predict how
human operators control a vehicle in response to upcoming road situations. A
risk field assigns a non-negative risk measure to the state of the system in
order to model how close that state is to violating a safety property, such as
hitting an obstacle or exiting the road. Using risk fields, we construct a
stochastic model of the operator that maps from states to likely actions. We
demonstrate our approach on a driving task wherein human subjects are asked to
drive a car inside a realistic driving simulator while avoiding obstacles
placed on the road. We show that the most likely risk field given the driving
data is obtained by solving a convex optimization problem. Next, we apply the
inferred risk fields to generate distinct driving behaviors while comparing
predicted trajectories against ground truth measurements. We observe that the
risk fields are excellent at predicting future trajectory distributions with
high prediction accuracy for up to twenty seconds prediction horizons. At the
same time, we observe some challenges such as the inability to account for how
drivers choose to accelerate/decelerate based on the road conditions.
Related papers
- Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space [3.487370856323828]
This work introduces an integrated prediction and planning approach that incorporates the uncertainties of predicted pedestrian states in the training of a model-free DRL algorithm.
A novel reward function encourages the AV to respect pedestrians' personal space, decrease speed during close approaches, and minimize the collision probability with their predicted paths.
Results show a 40% decrease in collision rate and a 15% increase in minimum distance to pedestrians compared to the state of the art model that does not account for prediction uncertainty.
arXiv Detail & Related papers (2024-05-22T20:09:21Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Enhanced Behavioral Cloning with Environmental Losses for Self-Driving
Vehicles [1.468677167874397]
Recent works on behavioral cloning show that simple imitation of expert observations is not sufficient to handle complex driving scenarios.
This paper proposes a set of loss functions, namely Social loss and Road loss, which account for modelling risky social interactions in path planning.
We validated this approach on a large-scale urban driving dataset.
arXiv Detail & Related papers (2022-02-04T10:27:10Z) - Risk Measurement, Risk Entropy, and Autonomous Driving Risk Modeling [0.0]
This article examines the emerging technical difficulties, new ideas, and methods of risk modeling under autonomous driving scenarios.
It provides technical feasibility for realizing risk assessment and car insurance pricing under a computer simulation environment.
arXiv Detail & Related papers (2021-09-15T11:00:18Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
We propose a two-step approach for risk-sensitive behavior generation for self-driving vehicles.
First, we learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning.
During execution, the optimal risk-sensitive action is selected by applying established risk criteria.
arXiv Detail & Related papers (2021-02-05T11:45:12Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.