論文の概要: Contextual Dynamic Pricing with Strategic Buyers
- arxiv url: http://arxiv.org/abs/2307.04055v2
- Date: Tue, 25 Jun 2024 18:25:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 19:53:52.998995
- Title: Contextual Dynamic Pricing with Strategic Buyers
- Title(参考訳): 戦略的買い手によるコンテキスト動的価格設定
- Authors: Pangpang Liu, Zhuoran Yang, Zhaoran Wang, Will Wei Sun,
- Abstract要約: 戦略的買い手によるコンテキスト動的価格問題について検討する。
売り手は買い手の真の特徴を観察せず、買い手の戦略行動に応じて操作された特徴を観察する。
本稿では,販売者の累積収益を最大化するために,購入者の戦略的行動をオンライン学習に取り入れた戦略的動的価格政策を提案する。
- 参考スコア(独自算出の注目度): 93.97401997137564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. Such strategic behavior can hinder firms from maximizing their profits. In this paper, we study the contextual dynamic pricing problem with strategic buyers. The seller does not observe the buyer's true feature, but a manipulated feature according to buyers' strategic behavior. In addition, the seller does not observe the buyers' valuation of the product, but only a binary response indicating whether a sale happens or not. Recognizing these challenges, we propose a strategic dynamic pricing policy that incorporates the buyers' strategic behavior into the online learning to maximize the seller's cumulative revenue. We first prove that existing non-strategic pricing policies that neglect the buyers' strategic behavior result in a linear $\Omega(T)$ regret with $T$ the total time horizon, indicating that these policies are not better than a random pricing policy. We then establish that our proposed policy achieves a sublinear regret upper bound of $O(\sqrt{T})$. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. Our policy can also accommodate the scenario when the marginal cost of manipulation is unknown in advance. To account for it, we simultaneously estimate the valuation parameter and the cost parameter in the online pricing policy, which is shown to also achieve an $O(\sqrt{T})$ regret bound. Extensive experiments support our theoretical developments and demonstrate the superior performance of our policy compared to other pricing policies that are unaware of the strategic behaviors.
- Abstract(参考訳): 個々の特性に基づいて価格を調整するパーソナライズド価格(Personalized pricing)は、企業によって消費者固有の価格ポリシーを実装するために一般的に使用される。
このプロセスでは、購入者が戦略的に特徴データを操作して価格を下げ、特定の操作コストを発生させることができる。
このような戦略的行動は、企業が利益を最大化するのを妨げる。
本稿では,戦略的買い手によるコンテキスト動的価格問題について検討する。
売り手は買い手の真の特徴を観察せず、買い手の戦略行動に応じて操作された特徴を観察する。
さらに、販売者は商品の購入者の評価を観察せず、販売が行われるか否かを示すバイナリ応答のみを表示する。
これらの課題を認識し,販売者の累積収益を最大化するために,購入者の戦略的行動をオンライン学習に取り入れた戦略的動的価格政策を提案する。
まず、購入者の戦略的行動を無視した既存の非戦略的な価格政策が、合計時間枠で$T$でリニアな$\Omega(T)$後悔をもたらすことを証明し、これらのポリシーがランダムな価格政策より優れていることを示す。
すると、提案したポリシーは、$O(\sqrt{T})$のサブ線形後悔上限を達成する。
重要なことは、我々のポリシーは、既存の動的価格ポリシーと戦略的行動処理アルゴリズムの合併ではない。
我々の政策は、操作の限界コストが事前に不明な場合にも適用できる。
そこで我々は,オンライン価格政策における評価パラメータとコストパラメータを同時に推定し,そのパラメータを$O(\sqrt{T})$ regret bound とすることを示した。
大規模な実験は、戦略的な行動に気付かない他の価格政策と比較して、我々の理論的発展を支援し、我々の政策の優れた性能を実証する。
関連論文リスト
- A Tale of Two Cities: Pessimism and Opportunism in Offline Dynamic Pricing [20.06425698412548]
本稿では,データカバレッジを前提としないオフライン動的価格について検討する。
我々は、関連する価格が観測されていない需要パラメータに限定した部分的識別を確立する。
提案した部分的識別枠組みに悲観的・機会論的戦略を取り入れて,推定方針を導出する。
論文 参考訳(メタデータ) (2024-11-12T19:09:41Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Dynamic Pricing and Learning with Long-term Reference Effects [16.07344044662994]
本研究では,販売者が提示した過去の価格の基準価格が平均値となる,シンプルで斬新な参照価格メカニズムについて検討する。
このメカニズムの下では,モデルパラメータに関係なく,マークダウンポリシがほぼ最適であることを示す。
次に、需要モデルパラメータが不明な、より困難な動的価格と学習の問題について検討する。
論文 参考訳(メタデータ) (2024-02-19T21:36:54Z) - Pricing with Contextual Elasticity and Heteroscedastic Valuation [23.96777734246062]
我々は、顧客がその特徴と価格に基づいて商品を購入するかどうかを決めるオンラインコンテキスト動的価格問題について検討する。
本稿では,機能に基づく価格弾力性の導入により,顧客の期待する需要をモデル化する新たなアプローチを提案する。
我々の結果は、文脈的弾力性とヘテロセダスティックな評価の関係に光を当て、効果的で実用的な価格戦略の洞察を与えました。
論文 参考訳(メタデータ) (2023-12-26T11:07:37Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
ポリシ・コンボリューション(Policy Convolution)のファミリーは、アクション内の潜在構造を使用して、ログとターゲットポリシを戦略的に畳み込みます。
合成およびベンチマークデータセットの実験では、PCを使用する場合の平均二乗誤差(MSE)が顕著に改善されている。
論文 参考訳(メタデータ) (2023-10-24T01:00:01Z) - Strategic Apple Tasting [35.25249063553063]
ハイテイク領域におけるアルゴリズムによる意思決定は、しばしばアルゴリズムへの入力を戦略的に修正するインセンティブを持つエージェントに決定を割り当てる。
我々は、この設定をリンゴ味のフィードバックによるオンライン学習問題として定式化する。
我々の目標は、プリンシパルのパフォーマンスを後見の最良の固定政策のパフォーマンスと比較する、サブリニアな戦略的後悔を達成することです。
論文 参考訳(メタデータ) (2023-06-09T20:46:31Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Autoregressive Bandits [58.46584210388307]
本稿では,オンライン学習環境であるAutoregressive Banditsを提案する。
報酬プロセスの軽微な仮定の下では、最適ポリシーを便利に計算できることが示される。
次に、新しい楽観的後悔最小化アルゴリズム、すなわちAutoRegressive Upper Confidence Bound (AR-UCB)を考案し、$widetildemathcalO left( frac(k+1)3/2sqrtnT (1-G)のサブ線形後悔を被る。
論文 参考訳(メタデータ) (2022-12-12T21:37:36Z) - Strategic Decision-Making in the Presence of Information Asymmetry:
Provably Efficient RL with Algorithmic Instruments [55.41685740015095]
我々は,戦略MDPと呼ばれる新しいモデルの下で,オフライン強化学習について検討する。
アルゴリズムiNstruments(PLAN)を用いたペシミスティックポリシー学習法を提案する。
論文 参考訳(メタデータ) (2022-08-23T15:32:44Z) - Dynamic Incentive-aware Learning: Robust Pricing in Contextual Auctions [13.234975857626752]
我々は、文脈的な第2価格オークションにおいて、戦略的買い手に対する準備価格の堅牢な学習の問題を考察する。
このような戦略的行動に頑健な学習方針を提案する。
論文 参考訳(メタデータ) (2020-02-25T19:00:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。