論文の概要: Direct and Sparse Deformable Tracking
- arxiv url: http://arxiv.org/abs/2109.07370v1
- Date: Wed, 15 Sep 2021 15:28:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-16 17:58:26.351532
- Title: Direct and Sparse Deformable Tracking
- Title(参考訳): 直接・スパース変形追跡
- Authors: Jose Lamarca, Juan J. Gomez Rodriguez, Juan D. Tardos and J.M.M.
Montiel
- Abstract要約: 本稿では,各点の局所的変形モデルを用いた新しいデフォルマブルカメラトラッキング手法を提案する。
直接測光誤差コスト関数により、明示的な大域的変形モデルなしで、サーベイルの位置と向きを追跡することができる。
- 参考スコア(独自算出の注目度): 4.874780144224057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable Monocular SLAM algorithms recover the localization of a camera in
an unknown deformable environment. Current approaches use a template-based
deformable tracking to recover the camera pose and the deformation of the map.
These template-based methods use an underlying global deformation model. In
this paper, we introduce a novel deformable camera tracking method with a local
deformation model for each point. Each map point is defined as a single
textured surfel that moves independently of the other map points. Thanks to a
direct photometric error cost function, we can track the position and
orientation of the surfel without an explicit global deformation model. In our
experiments, we validate the proposed system and observe that our local
deformation model estimates more accurately and robustly the targeted
deformations of the map in both laboratory-controlled experiments and in-body
scenarios undergoing non-isometric deformations, with changing topology or
discontinuities.
- Abstract(参考訳): 変形可能なモノクロSLAMアルゴリズムは、未知の変形可能な環境でのカメラのローカライゼーションを回復する。
現在のアプローチでは、テンプレートベースの変形可能なトラッキングを使用して、カメラのポーズとマップの変形を回復する。
これらのテンプレートベースの方法は、基盤となるグローバル変形モデルを使用する。
本稿では,各点の局所的変形モデルを用いた新しい変形可能なカメラトラッキング手法を提案する。
各マップポイントは、他のマップポイントとは独立に動く単一のテクスチャ付きサーフェルとして定義される。
直接測光誤差コスト関数により、明示的な大域的変形モデルなしで、サーベイルの位置と向きを追跡することができる。
実験では,提案手法の有効性を検証し,実験室が制御した実験と非等方的変形を行う物体内シナリオにおいて,局所変形モデルにより地図の標的変形をより正確に,頑健に推定する。
関連論文リスト
- The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes [79.00228778543553]
このデータセットは、3Dシーンの中で地上の真実を語る最初の大規模なカメラ軌道である。
リアルな3Dビルディングのシミュレーションでは、膨大な量のデータと地上の真実のラベルが得られます。
本稿では,光学的フロー推定を剛体カメラ運動に分解するDrunkard's Odometryと呼ばれる,変形可能な新しいオドメトリー法を提案する。
論文 参考訳(メタデータ) (2023-06-29T13:09:31Z) - Neural Shape Deformation Priors [14.14047635248036]
本稿では,新しい形状操作法であるニューラル・シェイプ・フォーメーション・プレファレンスを提案する。
形状の幾何学的性質に基づいて変形挙動を学習する。
本手法は, 難解な変形に対して適用可能であり, 未知の変形に対して良好に一般化できる。
論文 参考訳(メタデータ) (2022-10-11T17:03:25Z) - Tracking monocular camera pose and deformation for SLAM inside the human
body [2.094821665776961]
カメラのポーズと3Dシーンの変形を同時に追跡する新しい手法を提案する。
この方法は照明不変の測光法を用いて画像の特徴を追跡し、カメラの動きと変形を推定する。
以上の結果から, 複雑なシーンにおいて, 変形のレベルが増大する中で, 方法の精度とロバスト性を示すことが示唆された。
論文 参考訳(メタデータ) (2022-04-18T13:25:23Z) - Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape
Laplacian [58.704089101826774]
形状分類と変形型に最小限の制約を課した3次元画像変形法を提案する。
点雲として表される3次元再構成の基底体積のラプラシアン形状を予測するために,教師付き学習に基づくアプローチを採用する。
実験では,2次元キャラクタと人間の衣料画像の変形実験を行った。
論文 参考訳(メタデータ) (2022-03-29T04:57:18Z) - Animatable Implicit Neural Representations for Creating Realistic
Avatars from Videos [63.16888987770885]
本稿では,マルチビュー映像からアニマタブルな人間モデルを構築することの課題について述べる。
線形ブレンドスキンアルゴリズムに基づくポーズ駆動変形場を提案する。
提案手法は,近年の人体モデリング手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T17:56:59Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Extracting Deformation-Aware Local Features by Learning to Deform [3.364554138758565]
非剛性変形に対して頑健な静止画像から特徴量を計算するための新しい手法を提案する。
我々は、シミュレーション環境でオブジェクトに非剛性変形を適用することにより、モデルアーキテクチャをエンドツーエンドにトレーニングする。
実験により, この手法は, 最新の手工芸画像, 学習ベース画像, およびRGB-Dディスクリプタを異なるデータセットで比較した。
論文 参考訳(メタデータ) (2021-11-20T15:46:33Z) - Identity-Disentangled Neural Deformation Model for Dynamic Meshes [8.826835863410109]
我々は、暗黙の神経機能を用いたポーズ依存的な変形から、同一性によって引き起こされる形状変化を歪曲する神経変形モデルを学ぶ。
本稿では,大域的ポーズアライメントとニューラル変形モデルを統合する2つの手法を提案する。
また, 固定テンプレートの制約を伴わずにヤシの印刷や腱などの表面の細部を再構築する際に, 従来の骨格駆動モデルよりも優れていた。
論文 参考訳(メタデータ) (2021-09-30T17:43:06Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
SNARFは多角形メッシュに対する線形ブレンドスキンの利点とニューラル暗黙表面の利点を組み合わせたものである。
反復ルート探索を用いて任意の変形点のすべての正準対応を探索するフォワードスキンモデルを提案する。
最先端のニューラルネットワークの暗黙的表現と比較すると,このアプローチは,精度を維持しつつ,未認識のポーズを一般化する。
論文 参考訳(メタデータ) (2021-04-08T17:54:59Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。