論文の概要: Learning logic programs through divide, constrain, and conquer
- arxiv url: http://arxiv.org/abs/2109.07818v1
- Date: Thu, 16 Sep 2021 09:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 23:04:48.238179
- Title: Learning logic programs through divide, constrain, and conquer
- Title(参考訳): 分割、制約、征服を通じて論理プログラムを学ぶ
- Authors: Andrew Cropper
- Abstract要約: 古典的な分母探索と近代的な制約駆動探索を組み合わせた帰納論理プログラミング手法を提案する。
3つのドメイン(分類、帰納的汎用ゲームプレイ、プログラム合成)に対する実験により、我々のアプローチは予測精度を高め、学習時間を短縮できることが示された。
- 参考スコア(独自算出の注目度): 22.387008072671005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an inductive logic programming approach that combines classical
divide-and-conquer search with modern constraint-driven search. Our anytime
approach can learn optimal, recursive, and large programs and supports
predicate invention. Our experiments on three domains (classification,
inductive general game playing, and program synthesis) show that our approach
can increase predictive accuracies and reduce learning times.
- Abstract(参考訳): 古典的除算探索と近代的制約駆動探索を組み合わせた帰納的論理プログラミング手法を提案する。
当社のanytimeアプローチは,最適かつ再帰的,大規模プログラムを学習し,述語発明を支援する。
3つのドメイン(分類、帰納的汎用ゲームプレイ、プログラム合成)に対する実験により、我々のアプローチは予測精度を高め、学習時間を短縮できることが示された。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Learning logic programs by finding minimal unsatisfiable subprograms [24.31242130341093]
最小不満足なサブプログラム (MUSP) を識別する ILP アプローチを導入する。
プログラム合成やゲームプレイなど,複数の領域での実験を行った結果,学習時間を99%短縮できることがわかった。
論文 参考訳(メタデータ) (2024-01-29T18:24:16Z) - Generalisation Through Negation and Predicate Invention [25.944127431156627]
我々は、否定と述語的発明を組み合わせた帰納論理プログラミング(ILP)アプローチを導入する。
我々は,通常の論理プログラムを述語的発明で学習できるNOPIで実装する。
複数の領域に対する実験結果から,本手法は予測精度と学習時間を向上できることが示された。
論文 参考訳(メタデータ) (2023-01-18T16:12:27Z) - Learning logic programs by combining programs [24.31242130341093]
我々は、小さな非分離型プログラムを学習し、それらを組み合わせるアプローチを導入する。
我々は制約駆動型LPシステムにアプローチを実装した。
ゲームプレイやプログラム合成など,複数の領域に対する実験により,既存のアプローチを劇的に上回る結果が得られた。
論文 参考訳(メタデータ) (2022-06-01T10:07:37Z) - Learning logic programs by discovering where not to search [18.27510863075184]
仮説を探す前に、まず検索しない場所を見つけるアプローチを導入する」。
我々は与えられたBKを用いて、数が偶数と奇数の両方で成り立たないような仮説上の制約を発見する。
複数のドメインに対する実験により,本手法は学習時間を著しく短縮できることが示された。
論文 参考訳(メタデータ) (2022-02-20T12:32:03Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
本稿では,プログラム変換の集合,変換プログラムの効率を評価するための単純な指標,およびこの指標を改善するための探索手順について述べる。
実際に、自動検索は初期プログラムの大幅な改善を見出すことができることを示す。
論文 参考訳(メタデータ) (2021-09-14T20:52:55Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Learning Differentiable Programs with Admissible Neural Heuristics [43.54820901841979]
ドメイン固有言語におけるプログラムとして表現される微分可能関数の学習問題について検討する。
我々は、この最適化問題を、プログラム構文のトップダウン導出を符号化した重み付きグラフの探索として構成する。
私たちの重要なイノベーションは、さまざまなニューラルネットワークのクラスを、プログラムの空間上の連続的な緩和と見なすことです。
論文 参考訳(メタデータ) (2020-07-23T16:07:39Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z) - Provably Efficient Exploration for Reinforcement Learning Using
Unsupervised Learning [96.78504087416654]
強化学習(RL)問題における効率的な探索に教師なし学習を用い,本パラダイムが有効であるかどうかを考察する。
本稿では,教師なし学習アルゴリズムと非線形表RLアルゴリズムという,2つのコンポーネント上に構築された汎用的なアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-15T19:23:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。