論文の概要: Learning logic programs by finding minimal unsatisfiable subprograms
- arxiv url: http://arxiv.org/abs/2401.16383v1
- Date: Mon, 29 Jan 2024 18:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 13:42:43.209921
- Title: Learning logic programs by finding minimal unsatisfiable subprograms
- Title(参考訳): 最小不満足な部分プログラムを見つけることで論理プログラムを学ぶ
- Authors: Andrew Cropper and C\'eline Hocquette
- Abstract要約: 最小不満足なサブプログラム (MUSP) を識別する ILP アプローチを導入する。
プログラム合成やゲームプレイなど,複数の領域での実験を行った結果,学習時間を99%短縮できることがわかった。
- 参考スコア(独自算出の注目度): 24.31242130341093
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The goal of inductive logic programming (ILP) is to search for a logic
program that generalises training examples and background knowledge. We
introduce an ILP approach that identifies minimal unsatisfiable subprograms
(MUSPs). We show that finding MUSPs allows us to efficiently and soundly prune
the search space. Our experiments on multiple domains, including program
synthesis and game playing, show that our approach can reduce learning times by
99%.
- Abstract(参考訳): 帰納的論理プログラミング(ILP)の目標は、トレーニング例とバックグラウンド知識を一般化する論理プログラムを探すことである。
我々は,最小不満足なサブプログラム (MUSP) を識別する ILP アプローチを導入する。
その結果,検索空間の探索は効率的かつ健全に行えることがわかった。
プログラム合成やゲームプレイを含む複数のドメインにおける実験により,学習時間を99%削減できることを示した。
関連論文リスト
- Searching Latent Program Spaces [0.0]
本研究では,連続空間における潜伏プログラム上の分布を学習し,効率的な探索とテスト時間適応を可能にするプログラム誘導アルゴリズムを提案する。
テスト時間適応機構を利用して、トレーニング分布を超えて一般化し、目に見えないタスクに適応できることを示す。
論文 参考訳(メタデータ) (2024-11-13T15:50:32Z) - Learning logic programs by combining programs [24.31242130341093]
我々は、小さな非分離型プログラムを学習し、それらを組み合わせるアプローチを導入する。
我々は制約駆動型LPシステムにアプローチを実装した。
ゲームプレイやプログラム合成など,複数の領域に対する実験により,既存のアプローチを劇的に上回る結果が得られた。
論文 参考訳(メタデータ) (2022-06-01T10:07:37Z) - CrossBeam: Learning to Search in Bottom-Up Program Synthesis [51.37514793318815]
ボトムアップ合成のためのハンズオン検索ポリシーを学習するためのニューラルネットワークのトレーニングを提案する。
私たちのアプローチは、CrossBeamと呼ばれ、ニューラルモデルを使用して、以前に探索されたプログラムを新しいプログラムに組み合わせる方法を選択します。
我々はCrossBeamが効率的に検索することを学び、最先端技術と比較してプログラム空間のより小さな部分を探索する。
論文 参考訳(メタデータ) (2022-03-20T04:41:05Z) - Learning logic programs by discovering where not to search [18.27510863075184]
仮説を探す前に、まず検索しない場所を見つけるアプローチを導入する」。
我々は与えられたBKを用いて、数が偶数と奇数の両方で成り立たないような仮説上の制約を発見する。
複数のドメインに対する実験により,本手法は学習時間を著しく短縮できることが示された。
論文 参考訳(メタデータ) (2022-02-20T12:32:03Z) - Learning logic programs through divide, constrain, and conquer [22.387008072671005]
古典的な分母探索と近代的な制約駆動探索を組み合わせた帰納論理プログラミング手法を提案する。
3つのドメイン(分類、帰納的汎用ゲームプレイ、プログラム合成)に対する実験により、我々のアプローチは予測精度を高め、学習時間を短縮できることが示された。
論文 参考訳(メタデータ) (2021-09-16T09:08:04Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
本稿では,プログラム変換の集合,変換プログラムの効率を評価するための単純な指標,およびこの指標を改善するための探索手順について述べる。
実際に、自動検索は初期プログラムの大幅な改善を見出すことができることを示す。
論文 参考訳(メタデータ) (2021-09-14T20:52:55Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
本稿では,関連する入力に対する出力プログラム間の整合性を利用して,スプリアスプログラムの影響を低減することを提案する。
より一貫性のあるフォーマリズムは、一貫性に基づくトレーニングを必要とせずに、モデルパフォーマンスを改善することにつながります。
論文 参考訳(メタデータ) (2021-07-13T03:48:04Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z) - Learning large logic programs by going beyond entailment [18.27510863075184]
プログラムをインクリメンタルに構築するために、サンプル依存の損失関数によって誘導される最良優先探索を利用する新しいILPシステムであるBruteで、我々のアイデアを実装した。
実験の結果,Bruteは予測精度と学習時間で既存のILPシステムを大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2020-04-21T09:31:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。