論文の概要: ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and
Tactile Representations
- arxiv url: http://arxiv.org/abs/2109.07991v1
- Date: Thu, 16 Sep 2021 14:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-17 14:05:38.786249
- Title: ObjectFolder: A Dataset of Objects with Implicit Visual, Auditory, and
Tactile Representations
- Title(参考訳): objectfolder:暗黙の視覚的、聴覚的、触覚的な表現を持つオブジェクトのデータセット
- Authors: Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, Jiajun Wu
- Abstract要約: 両課題に対処する100のオブジェクトからなるデータセットであるObjectを,2つの重要なイノベーションで紹介する。
まず、オブジェクトは視覚的、聴覚的、触覚的なすべてのオブジェクトの知覚データをエンコードし、多数の多感覚オブジェクト認識タスクを可能にする。
第2に、Objectは統一されたオブジェクト中心のシミュレーションと、各オブジェクトの視覚的テクスチャ、触覚的読み出し、触覚的読み出しに暗黙的な表現を採用しており、データセットの使用が柔軟で共有が容易である。
- 参考スコア(独自算出の注目度): 52.226947570070784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multisensory object-centric perception, reasoning, and interaction have been
a key research topic in recent years. However, the progress in these directions
is limited by the small set of objects available -- synthetic objects are not
realistic enough and are mostly centered around geometry, while real object
datasets such as YCB are often practically challenging and unstable to acquire
due to international shipping, inventory, and financial cost. We present
ObjectFolder, a dataset of 100 virtualized objects that addresses both
challenges with two key innovations. First, ObjectFolder encodes the visual,
auditory, and tactile sensory data for all objects, enabling a number of
multisensory object recognition tasks, beyond existing datasets that focus
purely on object geometry. Second, ObjectFolder employs a uniform,
object-centric, and implicit representation for each object's visual textures,
acoustic simulations, and tactile readings, making the dataset flexible to use
and easy to share. We demonstrate the usefulness of our dataset as a testbed
for multisensory perception and control by evaluating it on a variety of
benchmark tasks, including instance recognition, cross-sensory retrieval, 3D
reconstruction, and robotic grasping.
- Abstract(参考訳): 近年、多感覚オブジェクト中心の知覚、推論、相互作用が重要な研究課題となっている。
しかし、これらの方向の進歩は、利用可能な小さなオブジェクトセットによって制限されている。合成オブジェクトは十分に現実的ではなく、主に幾何学を中心にしているが、ycbのような実際のオブジェクトデータセットは、国際的な出荷、在庫、財務コストのために、事実上困難で不安定である。
ObjectFolderは100の仮想オブジェクトからなるデータセットで、両方の課題に2つの重要なイノベーションで対処します。
まず、ObjectFolderは視覚的、聴覚的、触覚的な感覚データをすべてのオブジェクトにエンコードし、オブジェクトの幾何学に純粋にフォーカスする既存のデータセットを超えて、多くのマルチセンサーオブジェクト認識タスクを可能にします。
第二に、ObjectFolderは各オブジェクトの視覚的テクスチャ、音響シミュレーション、触覚的な読みに一様でオブジェクト中心で暗黙的な表現を採用しており、データセットを柔軟に使いやすく、共有しやすくしている。
本稿では,多感覚知覚と制御のためのテストベッドとしてのデータセットの有用性を,インスタンス認識,クロスセンサ検索,3次元再構成,ロボット認識など,さまざまなベンチマークタスクで評価する。
関連論文リスト
- Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments [44.6372390798904]
本稿では,特定の個人オブジェクトの位置と到達を具体化するタスクデノマイトされたパーソナライズされたパーソナライズドインスタンスベースのナビゲーション(PIN)を提案する。
各エピソードにおいて、ターゲットオブジェクトは、中性背景上の視覚的参照画像のセットと手動による注釈付きテキスト記述の2つのモードを使用してエージェントに提示される。
論文 参考訳(メタデータ) (2024-10-23T18:01:09Z) - The ObjectFolder Benchmark: Multisensory Learning with Neural and Real
Objects [51.22194706674366]
マルチセンサーなオブジェクト中心学習のための10のタスクからなるベンチマークスイートであるObject Benchmarkを紹介した。
また,100個の実世界の家庭用オブジェクトに対するマルチセンサー計測を含む,オブジェクトリアルデータセットについても紹介する。
論文 参考訳(メタデータ) (2023-06-01T17:51:22Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition [6.282068591820947]
本稿では,複数表現に基づく一生涯のアンサンブル学習手法を提案する。
生涯学習を容易にするため、各アプローチは、オブジェクト情報を即座に保存して検索するメモリユニットを備える。
提案手法の有効性を,オフラインおよびオープンエンドシナリオで評価するために,幅広い実験を行った。
論文 参考訳(メタデータ) (2022-05-04T10:29:10Z) - ObjectFolder 2.0: A Multisensory Object Dataset for Sim2Real Transfer [46.24535144252644]
我々は、暗黙の神経表現という形で、一般的な家庭用オブジェクトの大規模データセットであるObject 2.0を提案する。
私たちのデータセットは、オブジェクトの量と時間の桁違いに速くなった場合の10倍の大きさです。
データセット内の仮想オブジェクトから学習したモデルが,実世界のオブジェクトへの転送に成功していることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:55:01Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
本稿では,オブジェクト中心表現に対する分散アプローチとして,複合オートエンコーダを提案する。
このシンプルで効率的なアプローチは、単純なマルチオブジェクトデータセット上の等価な実数値オートエンコーダよりも、より良い再構成性能を実現することを示す。
また、2つのデータセット上のSlotAttentionモデルと競合しないオブジェクト発見性能を実現し、SlotAttentionが失敗する第3のデータセットでオブジェクトをアンタングルする。
論文 参考訳(メタデータ) (2022-04-05T09:25:28Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。