Improving Regression Uncertainty Estimation Under Statistical Change
- URL: http://arxiv.org/abs/2109.08213v1
- Date: Thu, 16 Sep 2021 20:32:58 GMT
- Title: Improving Regression Uncertainty Estimation Under Statistical Change
- Authors: Tony Tohme, Kevin Vanslette, Kamal Youcef-Toumi
- Abstract summary: We propose and implement a loss function for regression uncertainty estimation based on the Bayesian Validation Metric framework.
A series of experiments on in-distribution data show that the proposed method is competitive with existing state-of-the-art methods.
- Score: 7.734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep neural networks are highly performant and successful in a wide
range of real-world problems, estimating their predictive uncertainty remains a
challenging task. To address this challenge, we propose and implement a loss
function for regression uncertainty estimation based on the Bayesian Validation
Metric (BVM) framework while using ensemble learning. A series of experiments
on in-distribution data show that the proposed method is competitive with
existing state-of-the-art methods. In addition, experiments on
out-of-distribution data show that the proposed method is robust to statistical
change and exhibits superior predictive capability.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.
Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.
Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - Model Free Prediction with Uncertainty Assessment [7.524024486998338]
We propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation.
We develop an end-to-end convergence rate for the conditional diffusion model and establish the normality of the generated samples.
Through numerical experiments, we empirically validate the efficacy of our proposed methodology.
arXiv Detail & Related papers (2024-05-21T11:19:50Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
We propose a benchmark of 8 image-based regression datasets with different types of challenging distribution shifts.
We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets.
arXiv Detail & Related papers (2023-02-07T18:54:39Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.