論文の概要: New Students on Sesame Street: What Order-Aware Matrix Embeddings Can
Learn from BERT
- arxiv url: http://arxiv.org/abs/2109.08449v1
- Date: Fri, 17 Sep 2021 10:15:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-20 14:50:54.229723
- Title: New Students on Sesame Street: What Order-Aware Matrix Embeddings Can
Learn from BERT
- Title(参考訳): セサミストリートの新しい学生: BERTから学習できるオーダーアウェアマトリックスの埋め込み
- Authors: Lukas Galke, Isabelle Cuber, Christoph Meyer, Henrik Ferdinand
N\"olscher, Angelina Sonderecker, Ansgar Scherp
- Abstract要約: 大規模事前訓練型言語モデル(PreLM)は、すべてのベンチマークで自然言語処理に革命をもたらしている。
一般的なアプローチでは, 同一構造蒸留やプルーニングによりPreLMのサイズを小さくするが, より効率的なオーダーアウェアな埋込みモデルへのPreLMの蒸留について検討する。
- 参考スコア(独自算出の注目度): 3.709823149373977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale pretrained language models (PreLMs) are revolutionizing natural
language processing across all benchmarks. However, their sheer size is
prohibitive in low-resource or large-scale applications. While common
approaches reduce the size of PreLMs via same-architecture distillation or
pruning, we explore distilling PreLMs into more efficient order-aware embedding
models. Our results on the GLUE benchmark show that embedding-centric students,
which have learned from BERT, yield scores comparable to DistilBERT on QQP and
RTE, often match or exceed the scores of ELMo, and only fall behind on
detecting linguistic acceptability.
- Abstract(参考訳): 大規模事前訓練型言語モデル(PreLM)は、すべてのベンチマークで自然言語処理に革命をもたらしている。
しかし、そのサイズは低リソースや大規模アプリケーションでは禁止されている。
一般的なアプローチでは, 同一構造蒸留やプルーニングによりPreLMのサイズを小さくするが, より効率的なオーダーアウェアな埋込みモデルへのPreLMの蒸留について検討する。
GLUEベンチマークの結果から,BERT から学んだ埋め込み中心の学生は,QQP と RTE で DistilBERT に匹敵する成績を示し,ELMO の得点と一致または超え,言語的受容性の検出に遅れがみられた。
関連論文リスト
- ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning [72.90823351726374]
我々は,LLM間の双方向の注目を可能にする,柔軟でプラグアンドプレイな実装であるLULME(Unified framework for Large Language Model Embedding)を紹介した。
また,テキスト埋め込みタスクのLLMを向上する新しい微調整手法であるGRL(Generation-augmented Representation Learning)を提案する。
フレームワークの柔軟性と有効性を示すために、異なるバックボーンアーキテクチャを持つULLMEから事前訓練された3つのモデルをリリースする。
論文 参考訳(メタデータ) (2024-08-06T18:53:54Z) - Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling [3.873482175367558]
本稿では,Large Language Model (LLM) による各トークンの生成を,アンサンブルのための分類(GaC)として扱う。
実験では、試験、数学、推論などいくつかのベンチマークで最先端のLCMをアンサンブルし、我々の手法が既存のコミュニティのパフォーマンスを損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-18T13:17:26Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Neural Architecture Search for Sentence Classification with BERT [4.862490782515929]
計算コストが小さいだけで,現在の単一層よりも優れたアーキテクチャを見つけるために,AutoML検索を実行します。
GLUEデータセットから,様々なNLPベンチマークを用いて分類アーキテクチャを検証する。
論文 参考訳(メタデータ) (2024-03-27T13:25:43Z) - Word Embeddings Revisited: Do LLMs Offer Something New? [2.822851601000061]
意味のある単語の埋め込みを学ぶことは、堅牢な言語モデルをトレーニングする上で鍵となる。
最近のLarge Language Models(LLMs)の増加は、多くの新しい単語/文/文書の埋め込みモデルを提供してくれました。
論文 参考訳(メタデータ) (2024-02-16T21:47:30Z) - How to Prune Your Language Model: Recovering Accuracy on the "Sparsity
May Cry'' Benchmark [60.72725673114168]
下流データセットの微調整中における正確なBERTプルーニングの問題を再考する。
そこで我々は,SMCベンチマークの挑戦においても,プルーニングを成功させるための一般的なガイドラインを提案する。
論文 参考訳(メタデータ) (2023-12-21T03:11:30Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。