FastHyMix: Fast and Parameter-free Hyperspectral Image Mixed Noise
Removal
- URL: http://arxiv.org/abs/2109.08879v1
- Date: Sat, 18 Sep 2021 08:35:45 GMT
- Title: FastHyMix: Fast and Parameter-free Hyperspectral Image Mixed Noise
Removal
- Authors: Lina Zhuang and Michael K. Ng
- Abstract summary: This paper introduces a fast and parameter-free hyperspectral image mixed noise removal method (termed FastHyMix)
It exploits two main characteristics of hyperspectral data, namely low-rankness in the spectral domain and high correlation in the spatial domain.
The proposed method takes advantage of the low-rankness using subspace representation and the correlation of HSIs by adding a powerful deep image prior.
- Score: 20.043152870504738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imaging with high spectral resolution plays an important role
in finding objects, identifying materials, or detecting processes. The decrease
of the widths of spectral bands leads to a decrease in the signal-to-noise
ratio (SNR) of measurements. The decreased SNR reduces the reliability of
measured features or information extracted from HSIs. Furthermore, the image
degradations linked with various mechanisms also result in different types of
noise, such as Gaussian noise, impulse noise, deadlines, and stripes. This
paper introduces a fast and parameter-free hyperspectral image mixed noise
removal method (termed FastHyMix), which characterizes the complex distribution
of mixed noise by using a Gaussian mixture model and exploits two main
characteristics of hyperspectral data, namely low-rankness in the spectral
domain and high correlation in the spatial domain. The Gaussian mixture model
enables us to make a good estimation of Gaussian noise intensity and the
location of sparse noise. The proposed method takes advantage of the
low-rankness using subspace representation and the spatial correlation of HSIs
by adding a powerful deep image prior, which is extracted from a neural
denoising network. An exhaustive array of experiments and comparisons with
state-of-the-art denoisers were carried out. The experimental results show
significant improvement in both synthetic and real datasets. A MATLAB demo of
this work will be available at https://github.com/LinaZhuang for the sake of
reproducibility.
Related papers
- There and Back Again: On the relation between noises, images, and their inversions in diffusion models [3.5707423185282665]
Diffusion Probabilistic Models (DDPMs) achieve state-of-the-art performance in synthesizing new images from random noise.
Recent DDPM-based editing techniques try to mitigate this issue by inverting images back to their approximated staring noise.
We study the relation between the initial Gaussian noise, the samples generated from it, and their corresponding latent encodings obtained through the inversion procedure.
arXiv Detail & Related papers (2024-10-31T00:30:35Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Hyperspectral Mixed Noise Removal via Subspace Representation and
Weighted Low-rank Tensor Regularization [10.131033322742363]
We employ subspace representation and the weighted low-rank tensor regularization (SWLRTR) into the model to remove the mixed noise in the hyperspectral image.
Experiments demonstrate that the SWLRTR method performs better than other hyperspectral denoising methods quantitatively and visually.
arXiv Detail & Related papers (2021-11-13T05:30:56Z) - Hyperspectral Image Denoising and Anomaly Detection Based on Low-rank
and Sparse Representations [7.2647309738186685]
Hyperspectral imaging measures the amount of electromagnetic energy across the instantaneous field of view at a very high resolution.
The increase in spectral resolution often means that there is a decrease in the number of photons received in each channel.
This degradation limits the quality of the extracted information and its potential applications.
arXiv Detail & Related papers (2021-03-12T18:07:27Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z) - Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector
Tensor Factorization [42.56231647066719]
Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information.
During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes.
We present a HSI restoration method named smooth and robust low rank tensor recovery.
arXiv Detail & Related papers (2020-06-29T02:10:07Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
We elaborate on residual-driven Fuzzy C-Means (FCM) for image segmentation.
Built on this framework, we present a weighted $ell_2$-norm fidelity term by weighting mixed noise distribution.
The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over existing FCM-related algorithms.
arXiv Detail & Related papers (2020-04-15T15:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.