Multi-Task Learning in Natural Language Processing: An Overview
- URL: http://arxiv.org/abs/2109.09138v2
- Date: Sun, 28 Apr 2024 07:25:45 GMT
- Title: Multi-Task Learning in Natural Language Processing: An Overview
- Authors: Shijie Chen, Yu Zhang, Qiang Yang,
- Abstract summary: Multi-Task Learning (MTL) can leverage useful information of related tasks to achieve simultaneous performance improvement on these tasks.
We first review MTL architectures used in NLP tasks and categorize them into four classes, including parallel architecture, hierarchical architecture, modular architecture, and generative adversarial architecture.
We present optimization techniques on loss construction, gradient regularization, data sampling, and task scheduling to properly train a multi-task model.
- Score: 12.011509222628055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning approaches have achieved great success in the field of Natural Language Processing (NLP). However, directly training deep neural models often suffer from overfitting and data scarcity problems that are pervasive in NLP tasks. In recent years, Multi-Task Learning (MTL), which can leverage useful information of related tasks to achieve simultaneous performance improvement on these tasks, has been used to handle these problems. In this paper, we give an overview of the use of MTL in NLP tasks. We first review MTL architectures used in NLP tasks and categorize them into four classes, including parallel architecture, hierarchical architecture, modular architecture, and generative adversarial architecture. Then we present optimization techniques on loss construction, gradient regularization, data sampling, and task scheduling to properly train a multi-task model. After presenting applications of MTL in a variety of NLP tasks, we introduce some benchmark datasets. Finally, we make a conclusion and discuss several possible research directions in this field.
Related papers
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Multi-Task Cooperative Learning via Searching for Flat Minima [8.835287696319641]
We propose to formulate MTL as a multi/bi-level optimization problem, and therefore force features to learn from each task in a cooperative approach.
Specifically, we update the sub-model for each task alternatively taking advantage of the learned sub-models of the other tasks.
To alleviate the negative transfer problem during the optimization, we search for flat minima for the current objective function.
arXiv Detail & Related papers (2023-09-21T14:00:11Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
Multitask learning (MTL) leverages task-relatedness to enhance performance.
We employ high-order tensors, with each mode corresponding to a task index, to naturally represent tasks referenced by multiple indices.
We propose a general framework of low-rank MTL methods with tensorized support vector machines (SVMs) and least square support vector machines (LSSVMs)
arXiv Detail & Related papers (2023-08-30T14:28:26Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships.
This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges.
arXiv Detail & Related papers (2023-07-25T20:08:41Z) - When to Use Multi-Task Learning vs Intermediate Fine-Tuning for
Pre-Trained Encoder Transfer Learning [15.39115079099451]
Transfer learning (TL) in natural language processing has seen a surge of interest in recent years.
Three main strategies have emerged for making use of multiple supervised datasets during fine-tuning.
We compare all three TL methods in a comprehensive analysis on the GLUE dataset suite.
arXiv Detail & Related papers (2022-05-17T06:48:45Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.