論文の概要: Barely Biased Learning for Gaussian Process Regression
- arxiv url: http://arxiv.org/abs/2109.09417v1
- Date: Mon, 20 Sep 2021 10:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-21 16:50:12.036317
- Title: Barely Biased Learning for Gaussian Process Regression
- Title(参考訳): ガウス過程回帰のためのベーシックバイアス学習
- Authors: David R. Burt, Artem Artemev, Mark van der Wilk
- Abstract要約: 本稿では,ログ残差確率を推定する際に使用する計算量を適応的に選択する手法を提案する。
原理的には単純だが,本手法の現在の実装は既存の近似と競合するものではない。
- 参考スコア(独自算出の注目度): 19.772149500352945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work in scalable approximate Gaussian process regression has discussed
a bias-variance-computation trade-off when estimating the log marginal
likelihood. We suggest a method that adaptively selects the amount of
computation to use when estimating the log marginal likelihood so that the bias
of the objective function is guaranteed to be small. While simple in principle,
our current implementation of the method is not competitive computationally
with existing approximations.
- Abstract(参考訳): スケーラブルな近似ガウス過程回帰における最近の研究は、ログ限界確率を推定する際のバイアス分散計算トレードオフについて議論している。
目的関数のバイアスが小さいことを保証するために,ログ限界確率を推定する際に使用する計算量を適応的に選択する手法を提案する。
原理的には単純だが,本手法の現在の実装は既存の近似値と競合しない。
関連論文リスト
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Introduction To Gaussian Process Regression In Bayesian Inverse
Problems, With New ResultsOn Experimental Design For Weighted Error Measures [0.0]
この研究は、特に逆問題に対する代理モデルを構築する文脈において、ガウス過程回帰の導入として機能する。
本研究は, 正の後方分布と近似の後方分布との誤差が, 正の後方分布の重み付けした$L2$-normで測定された真と近似の近さの誤差によって有界となることを示す。
論文 参考訳(メタデータ) (2023-02-09T09:25:39Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - Scalable Gaussian-process regression and variable selection using
Vecchia approximations [3.4163060063961255]
ヴェッキアをベースとしたミニバッチサブサンプリングは、偏りのない勾配推定器を提供する。
偏りのない勾配推定器を提供するVecchiaベースのミニバッチサブサンプリングを提案する。
論文 参考訳(メタデータ) (2022-02-25T21:22:38Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
Regression Using Conjugate Gradients [19.772149500352945]
下界の最大化によるモデルパラメータの近似的最大度学習は、スパース変分アプローチの利点の多くを保っていることを示す。
実験では、他の共役グラデーションベースのアプローチと比較して、トレーニング時間の同等の量のためのモデルで予測性能の改善を示します。
論文 参考訳(メタデータ) (2021-02-16T17:54:59Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
既存のほとんどのアプローチは、重い尾の分布から誘導される非ガウス的確率に、外れやすいガウス的確率を置き換えるものである。
提案手法は、未知の回帰関数の雑音および偏りの観測として、外れ値をモデル化する。
バイアス推定に基づいて、ロバストなGP回帰を標準のGP回帰問題に還元することができる。
論文 参考訳(メタデータ) (2020-01-14T06:21:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。