Decoupling Long- and Short-Term Patterns in Spatiotemporal Inference
- URL: http://arxiv.org/abs/2109.09506v3
- Date: Tue, 23 Apr 2024 14:18:38 GMT
- Title: Decoupling Long- and Short-Term Patterns in Spatiotemporal Inference
- Authors: Junfeng Hu, Yuxuan Liang, Zhencheng Fan, Li Liu, Yifang Yin, Roger Zimmermann,
- Abstract summary: It is impractical to deploy massive sensors due to the expensive costs.
How to get fine-grained data measurement has long been a pressing issue.
We propose a graphtemporal attention network to learn the relations across space and time for short-term patterns.
- Score: 31.245426664456257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensors are the key to environmental monitoring, which impart benefits to smart cities in many aspects, such as providing real-time air quality information to assist human decision-making. However, it is impractical to deploy massive sensors due to the expensive costs, resulting in sparse data collection. Therefore, how to get fine-grained data measurement has long been a pressing issue. In this paper, we aim to infer values at non-sensor locations based on observations from available sensors (termed spatiotemporal inference), where capturing spatiotemporal relationships among the data plays a critical role. Our investigations reveal two significant insights that have not been explored by previous works. Firstly, data exhibits distinct patterns at both long- and short-term temporal scales, which should be analyzed separately. Secondly, short-term patterns contain more delicate relations including those across spatial and temporal dimensions simultaneously, while long-term patterns involve high-level temporal trends. Based on these observations, we propose to decouple the modeling of short-term and long-term patterns. Specifically, we introduce a joint spatiotemporal graph attention network to learn the relations across space and time for short-term patterns. Furthermore, we propose a graph recurrent network with a time skip strategy to alleviate the gradient vanishing problem and model the long-term dependencies. Experimental results on four public real-world datasets demonstrate that our method effectively captures both long- and short-term relations, achieving state-of-the-art performance against existing methods.
Related papers
- Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridge is a novel framework designed to bridge the gap between non-stationarity and dependency modeling.
TimeBridge consistently achieves state-of-the-art performance in both short-term and long-term forecasting.
arXiv Detail & Related papers (2024-10-06T10:41:03Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling [24.368893944128086]
Stemporal graph neural networks achieve striking results by representing relationships across time series as a graph.
Most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden dynamics when part of the data is missing.
arXiv Detail & Related papers (2024-02-16T12:33:31Z) - INCREASE: Inductive Graph Representation Learning for Spatio-Temporal
Kriging [35.193756288996944]
SRU-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties.
We propose a novel inductive graph representation learning model for kriging.
arXiv Detail & Related papers (2023-02-06T12:28:35Z) - FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial
Video Classification [49.06447472006251]
We propose a novel deep neural network, termed FuTH-Net, to model not only holistic features, but also temporal relations for aerial video classification.
Our model is evaluated on two aerial video classification datasets, ERA and Drone-Action, and achieves the state-of-the-art results.
arXiv Detail & Related papers (2022-09-22T21:15:58Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - LSTA-Net: Long short-term Spatio-Temporal Aggregation Network for
Skeleton-based Action Recognition [14.078419675904446]
LSTA-Net: a novel short-term Spatio-Temporal Network.
Long/short-term temporal information is not well explored in existing works.
Experiments were conducted on three public benchmark datasets.
arXiv Detail & Related papers (2021-11-01T10:53:35Z) - An Enhanced Adversarial Network with Combined Latent Features for
Spatio-Temporal Facial Affect Estimation in the Wild [1.3007851628964147]
This paper proposes a novel model that efficiently extracts both spatial and temporal features of the data by means of its enhanced temporal modelling based on latent features.
Our proposed model consists of three major networks, coined Generator, Discriminator, and Combiner, which are trained in an adversarial setting combined with curriculum learning to enable our adaptive attention modules.
arXiv Detail & Related papers (2021-02-18T04:10:12Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.