Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
- URL: http://arxiv.org/abs/2402.10634v3
- Date: Sat, 8 Jun 2024 15:27:35 GMT
- Title: Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
- Authors: Ivan Marisca, Cesare Alippi, Filippo Maria Bianchi,
- Abstract summary: Stemporal graph neural networks achieve striking results by representing relationships across time series as a graph.
Most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden dynamics when part of the data is missing.
- Score: 24.368893944128086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a set of synchronous time series, each associated with a sensor-point in space and characterized by inter-series relationships, the problem of spatiotemporal forecasting consists of predicting future observations for each point. Spatiotemporal graph neural networks achieve striking results by representing the relationships across time series as a graph. Nonetheless, most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden spatiotemporal dynamics when part of the data is missing. In this work, we tackle this problem through hierarchical spatiotemporal downsampling. The input time series are progressively coarsened over time and space, obtaining a pool of representations that capture heterogeneous temporal and spatial dynamics. Conditioned on observations and missing data patterns, such representations are combined by an interpretable attention mechanism to generate the forecasts. Our approach outperforms state-of-the-art methods on synthetic and real-world benchmarks under different missing data distributions, particularly in the presence of contiguous blocks of missing values.
Related papers
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.
We fill this void by introducing a novel conformal prediction method based on graph deep learning operators.
Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data [6.207073888171358]
We propose a method embedding Graph Neural ODE with reliability and time-aware mechanism to reconstruct the dynamics.
The proposed method has been validated in experiments of different networked dynamical systems.
arXiv Detail & Related papers (2024-11-29T14:10:16Z) - From Link Prediction to Forecasting: Addressing Challenges in Batch-based Temporal Graph Learning [0.716879432974126]
We show that the suitability of common batch-oriented evaluation depends on the datasets' characteristics.
For continuous-time temporal graphs, fixed-size batches create time windows with different durations, resulting in an inconsistent dynamic link prediction task.
For discrete-time temporal graphs, the sequence of batches can additionally introduce temporal dependencies that are not present in the data.
arXiv Detail & Related papers (2024-06-07T12:45:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.