Long-Tailed Data Classification by Increasing and Decreasing Neurons During Training
- URL: http://arxiv.org/abs/2507.09940v1
- Date: Mon, 14 Jul 2025 05:29:16 GMT
- Title: Long-Tailed Data Classification by Increasing and Decreasing Neurons During Training
- Authors: Taigo Sakai, Kazuhiro Hotta,
- Abstract summary: Real-world datasets often exhibit class imbalance situations where certain classes have far fewer samples than others.<n>We propose a method that periodically adds and removes neurons during training, thereby boosting representational power for minority classes.<n>Our results underscore the effectiveness of dynamic, biologically inspired network designs in improving performance on class-imbalanced data.
- Score: 4.32776344138537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conventional deep learning, the number of neurons typically remains fixed during training. However, insights from biology suggest that the human hippocampus undergoes continuous neuron generation and pruning of neurons over the course of learning, implying that a flexible allocation of capacity can contribute to enhance performance. Real-world datasets often exhibit class imbalance situations where certain classes have far fewer samples than others, leading to significantly reduce recognition accuracy for minority classes when relying on fixed size networks.To address the challenge, we propose a method that periodically adds and removes neurons during training, thereby boosting representational power for minority classes. By retaining critical features learned from majority classes while selectively increasing neurons for underrepresented classes, our approach dynamically adjusts capacity during training. Importantly, while the number of neurons changes throughout training, the final network size and structure remain unchanged, ensuring efficiency and compatibility with deployment.Furthermore, by experiments on three different datasets and five representative models, we demonstrate that the proposed method outperforms fixed size networks and shows even greater accuracy when combined with other imbalance-handling techniques. Our results underscore the effectiveness of dynamic, biologically inspired network designs in improving performance on class-imbalanced data.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks [2.270857464465579]
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (zapping)<n>We investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings.
arXiv Detail & Related papers (2025-07-02T10:18:35Z) - Measure gradients, not activations! Enhancing neuronal activity in deep reinforcement learning [25.277730616459255]
Deep reinforcement learning (RL) agents frequently suffer from neuronal activity loss.<n>GraMa (Gradient Magnitude Neural Activity Metric) is a metric for quantifying neuron-level learning capacity.<n>We show that GraMa effectively reveals persistent neuron inactivity across diverse architectures.
arXiv Detail & Related papers (2025-05-29T23:07:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like
Training in a Multi-Agent Network Framework [6.446189857311325]
We propose a local objective for neurons that align them to exhibit similarities to error-backpropagation.
We examine a neural network comprising decentralized, self-interested neurons seeking to maximize their local objective.
We demonstrate the learning capacity of these multi-agent neural networks through experiments on three datasets.
arXiv Detail & Related papers (2023-10-15T21:07:09Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
We propose two new multi-spike learning rules which demonstrate better performance over other baselines on various tasks.
In the feature detection task, we re-examine the ability of unsupervised STDP with its limitations being presented.
Our proposed learning rules can reliably solve the task over a wide range of conditions without specific constraints being applied.
arXiv Detail & Related papers (2020-05-02T06:41:20Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.