Data Augmentation Through Monte Carlo Arithmetic Leads to More
Generalizable Classification in Connectomics
- URL: http://arxiv.org/abs/2109.09649v1
- Date: Mon, 20 Sep 2021 16:06:05 GMT
- Title: Data Augmentation Through Monte Carlo Arithmetic Leads to More
Generalizable Classification in Connectomics
- Authors: Gregory Kiar, Yohan Chatelain, Ali Salari, Alan C. Evans, Tristan
Glatard
- Abstract summary: We use Monte Carlo Arithmetic to perturb a structural connectome estimation pipeline.
The perturbed networks were captured in an augmented dataset, which was then used for an age classification task.
We find that this benefit does not hinge on a large number of perturbations, suggesting that even minimally perturbing a dataset adds meaningful variance which can be captured in the subsequently designed models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models are commonly applied to human brain imaging datasets
in an effort to associate function or structure with behaviour, health, or
other individual phenotypes. Such models often rely on low-dimensional maps
generated by complex processing pipelines. However, the numerical instabilities
inherent to pipelines limit the fidelity of these maps and introduce
computational bias. Monte Carlo Arithmetic, a technique for introducing
controlled amounts of numerical noise, was used to perturb a structural
connectome estimation pipeline, ultimately producing a range of plausible
networks for each sample. The variability in the perturbed networks was
captured in an augmented dataset, which was then used for an age classification
task. We found that resampling brain networks across a series of such
numerically perturbed outcomes led to improved performance in all tested
classifiers, preprocessing strategies, and dimensionality reduction techniques.
Importantly, we find that this benefit does not hinge on a large number of
perturbations, suggesting that even minimally perturbing a dataset adds
meaningful variance which can be captured in the subsequently designed models.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
We investigate the approximation efficiency of score functions by deep neural networks in generative modeling.
We observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms.
We provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
arXiv Detail & Related papers (2023-09-20T15:51:10Z) - Dense Hebbian neural networks: a replica symmetric picture of supervised
learning [4.133728123207142]
We consider dense, associative neural-networks trained by a teacher with supervision.
We investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations.
arXiv Detail & Related papers (2022-11-25T13:37:47Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Prediction of Object Geometry from Acoustic Scattering Using
Convolutional Neural Networks [8.067201256886733]
The present work proposes to infer object geometry from scattering features by training convolutional neural networks.
The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets.
arXiv Detail & Related papers (2020-10-21T00:51:14Z) - Neural Networks and Polynomial Regression. Demystifying the
Overparametrization Phenomena [17.205106391379026]
In the context of neural network models, overparametrization refers to the phenomena whereby these models appear to generalize well on the unseen data.
A conventional explanation of this phenomena is based on self-regularization properties of algorithms used to train the data.
We show that any student network interpolating the data generated by a teacher network generalizes well, provided that the sample size is at least an explicit quantity controlled by data dimension.
arXiv Detail & Related papers (2020-03-23T20:09:31Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - A Multi-Scale Tensor Network Architecture for Classification and
Regression [0.0]
We present an algorithm for supervised learning using tensor networks.
We employ a step of preprocessing the data by coarse-graining through a sequence of wavelet transformations.
We show how fine-graining through the network may be used to initialize models with access to finer-scale features.
arXiv Detail & Related papers (2020-01-22T21:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.