Prediction of Object Geometry from Acoustic Scattering Using
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2010.10691v3
- Date: Wed, 10 Feb 2021 23:24:58 GMT
- Title: Prediction of Object Geometry from Acoustic Scattering Using
Convolutional Neural Networks
- Authors: Ziqi Fan, Vibhav Vineet, Chenshen Lu, T.W. Wu, Kyla McMullen
- Abstract summary: The present work proposes to infer object geometry from scattering features by training convolutional neural networks.
The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets.
- Score: 8.067201256886733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acoustic scattering is strongly influenced by boundary geometry of objects
over which sound scatters. The present work proposes a method to infer object
geometry from scattering features by training convolutional neural networks.
The training data is generated from a fast numerical solver developed on CUDA.
The complete set of simulations is sampled to generate multiple datasets
containing different amounts of channels and diverse image resolutions. The
robustness of our approach in response to data degradation is evaluated by
comparing the performance of networks trained using the datasets with varying
levels of data degradation. The present work has found that the predictions
made from our models match ground truth with high accuracy. In addition,
accuracy does not degrade when fewer data channels or lower resolutions are
used.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - A Deep Learning Framework for Three Dimensional Shape Reconstruction from Phaseless Acoustic Scattering Far-field Data [11.588406765923999]
We develop a deep learning framework for shape reconstruction using limited information with single incident wave, single frequency, and phase-less far-field data.
This is done by (a) using a compact probabilistic shape latent space, learned by a 3D variational auto-encoder, and (b) a convolutional neural network trained to map the acoustic scattering information to this shape representation.
The proposed framework is evaluated on a synthetic 3D dataset, as well as ShapeNet, a popular 3D shape recognition dataset.
arXiv Detail & Related papers (2024-06-24T14:58:49Z) - Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
arXiv Detail & Related papers (2024-05-02T09:21:10Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Data Augmentation Through Monte Carlo Arithmetic Leads to More
Generalizable Classification in Connectomics [0.0]
We use Monte Carlo Arithmetic to perturb a structural connectome estimation pipeline.
The perturbed networks were captured in an augmented dataset, which was then used for an age classification task.
We find that this benefit does not hinge on a large number of perturbations, suggesting that even minimally perturbing a dataset adds meaningful variance which can be captured in the subsequently designed models.
arXiv Detail & Related papers (2021-09-20T16:06:05Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method.
The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately.
Our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
arXiv Detail & Related papers (2021-04-07T06:51:52Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Graph Convolutional Neural Networks for Body Force Prediction [0.0]
A graph based data-driven model is presented to perform inference on fields defined on an unstructured mesh.
The network can infer from field samples at different resolutions, and is invariant to the order in which the measurements within each sample are presented.
arXiv Detail & Related papers (2020-12-03T19:53:47Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.