論文の概要: Chemical-Reaction-Aware Molecule Representation Learning
- arxiv url: http://arxiv.org/abs/2109.09888v2
- Date: Wed, 22 Sep 2021 05:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 10:35:47.079347
- Title: Chemical-Reaction-Aware Molecule Representation Learning
- Title(参考訳): 化学反応アウェア分子表現学習
- Authors: Hongwei Wang, Weijiang Li, Xiaomeng Jin, Kyunghyun Cho, Heng Ji,
Jiawei Han, Martin D. Burke
- Abstract要約: 本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
- 参考スコア(独自算出の注目度): 88.79052749877334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecule representation learning (MRL) methods aim to embed molecules into a
real vector space. However, existing SMILES-based (Simplified Molecular-Input
Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods either take
SMILES strings as input that have difficulty in encoding molecule structure
information, or over-emphasize the importance of GNN architectures but neglect
their generalization ability. Here we propose using chemical reactions to
assist learning molecule representation. The key idea of our approach is to
preserve the equivalence of molecules with respect to chemical reactions in the
embedding space, i.e., forcing the sum of reactant embeddings and the sum of
product embeddings to be equal for each chemical equation. This constraint is
proven effective to 1) keep the embedding space well-organized and 2) improve
the generalization ability of molecule embeddings. Moreover, our model can use
any GNN as the molecule encoder and is thus agnostic to GNN architectures.
Experimental results demonstrate that our method achieves state-of-the-art
performance in a variety of downstream tasks, e.g., 17.4% absolute Hit@1 gain
in chemical reaction prediction, 2.3% absolute AUC gain in molecule property
prediction, and 18.5% relative RMSE gain in graph-edit-distance prediction,
respectively, over the best baseline method. The code is available at
https://github.com/hwwang55/MolR.
- Abstract(参考訳): 分子表現学習(MRL)法は、分子を実ベクトル空間に埋め込むことを目的としている。
しかし、既存のSMILES (Simplified Molecular-Input Line-Entry System) やGNN (Graph Neural Networks) のMRL法は、SMILES文字列を分子構造情報を符号化するのに困難である入力として利用するか、GNNアーキテクチャの重要性を過度に強調するが、一般化能力は無視する。
本稿では,化学反応を用いて分子の学習を支援することを提案する。
我々のアプローチの鍵となる考え方は、埋め込み空間における化学反応に関する分子の同値性を維持することであり、すなわち、反応性埋め込みの和と積埋め込みの和を各化学式に等しいように強制することである。
この制約は有効であることが証明される
1)埋込み空間をよく整理し、維持する。
2)分子埋め込みの一般化能力を向上させる。
さらに,本モデルでは分子エンコーダとして任意のGNNを使用でき,GNNアーキテクチャに依存しない。
実験結果から, 化学反応予測における17.4%の絶対Hit@1ゲイン, 2.3%の絶対AUCゲイン, 18.5%の相対RMSEゲインなど, 様々なダウンストリームタスクにおいて, 最先端性能を実現していることが示された。
コードはhttps://github.com/hwwang55/molrで入手できる。
関連論文リスト
- Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Efficient Chemical Space Exploration Using Active Learning Based on
Marginalized Graph Kernel: an Application for Predicting the Thermodynamic
Properties of Alkanes with Molecular Simulation [10.339394156446982]
分子動力学シミュレーションを用いてデータとグラフニューラルネットワーク(GNN)を生成して予測する。
具体的には、4から19個の炭素原子からなる251,728個のアルカン分子とその液体物性を標的としている。
検証の結果、313個の分子だけが正確なGNNモデルを訓練するのに十分であり、計算テストセットは$rm R2 > 0.99$、実験テストセットは$rm R2 > 0.94$であった。
論文 参考訳(メタデータ) (2022-09-01T14:59:13Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
化学表現学習のための新しい幾何強化分子表現学習法(GEM)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
考案されたGNNアーキテクチャの上に,空間知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T02:35:53Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLRは、大規模なラベルなしの分子データセットのための自己監視学習フレームワークです。
原子マスキング、結合除去、サブグラフ除去の3つの新しい分子グラフ増強法を提案する。
提案手法は,多くの挑戦的データセットに対して最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-02-19T17:35:18Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。