論文の概要: Using GNN property predictors as molecule generators
- arxiv url: http://arxiv.org/abs/2406.03278v1
- Date: Wed, 5 Jun 2024 13:53:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:01:08.376888
- Title: Using GNN property predictors as molecule generators
- Title(参考訳): 分子ジェネレータとしてのGNN特性予測器の利用
- Authors: Félix Therrien, Edward H. Sargent, Oleksandr Voznyy,
- Abstract要約: グラフニューラルネットワーク(GNN)は、物質や分子特性を正確に予測する強力なツールとして登場した。
本稿では、これらのニューラルネットワークの可逆性を利用して、所望の電子特性を持つ分子構造を直接生成する。
- 参考スコア(独自算出の注目度): 16.34646723046073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as powerful tools to accurately predict materials and molecular properties in computational discovery pipelines. In this article, we exploit the invertible nature of these neural networks to directly generate molecular structures with desired electronic properties. Starting from a random graph or an existing molecule, we perform a gradient ascent while holding the GNN weights fixed in order to optimize its input, the molecular graph, towards the target property. Valence rules are enforced strictly through a judicious graph construction. The method relies entirely on the property predictor; no additional training is required on molecular structures. We demonstrate the application of this method by generating molecules with specific DFT-verified energy gaps and octanol-water partition coefficients (logP). Our approach hits target properties with rates comparable to or better than state-of-the-art generative models while consistently generating more diverse molecules.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、計算探索パイプラインの材料や分子特性を正確に予測する強力なツールとして登場した。
本稿では、これらのニューラルネットワークの可逆性を利用して、所望の電子特性を持つ分子構造を直接生成する。
ランダムグラフや既存の分子から始めて、GNN重みを固定しながら勾配上昇を行い、その入力である分子グラフを目標特性に向けて最適化する。
妥当性規則は、厳密なグラフ構成によって強制される。
この方法は完全に特性予測器に依存しており、分子構造に追加の訓練は必要ない。
本手法の適用例は,特定のDFTによるエネルギーギャップとオクタノール-水分配係数(logP)を持つ分子を生成することである。
我々のアプローチは、より多様な分子を一貫して生成しながら、最先端の生成モデルに匹敵する速度でターゲット特性を達成している。
関連論文リスト
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - Pre-training of Molecular GNNs via Conditional Boltzmann Generator [0.0]
分子配座のデータセットを用いた分子GNNの事前学習法を提案する。
本モデルは,既存の事前学習法よりも分子特性の予測性能がよいことを示す。
論文 参考訳(メタデータ) (2023-12-20T15:30:15Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
分子特性予測問題に対する特性認識適応関係ネットワーク(PAR)を提案する。
我々のPARは、既存のグラフベースの分子エンコーダと互換性があり、プロパティ対応分子埋め込みとモデル分子関係グラフを得る能力も備えている。
論文 参考訳(メタデータ) (2021-07-16T16:22:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。