論文の概要: ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction
- arxiv url: http://arxiv.org/abs/2106.06130v1
- Date: Fri, 11 Jun 2021 02:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 14:01:56.444862
- Title: ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction
- Title(参考訳): chemrl-gem:geometry enhanced molecular representation learning for property prediction
- Authors: Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang,
Jingbo Zhou, Fan Wang, Hua Wu, and Haifeng Wang
- Abstract要約: 化学表現学習のための新しい幾何強化分子表現学習法(GEM)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
考案されたGNNアーキテクチャの上に,空間知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
- 参考スコア(独自算出の注目度): 25.49976851499949
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective molecular representation learning is of great importance to
facilitate molecular property prediction, which is a fundamental task for the
drug and material industry. Recent advances in graph neural networks (GNNs)
have shown great promise in applying GNNs for molecular representation
learning. Moreover, a few recent studies have also demonstrated successful
applications of self-supervised learning methods to pre-train the GNNs to
overcome the problem of insufficient labeled molecules. However, existing GNNs
and pre-training strategies usually treat molecules as topological graph data
without fully utilizing the molecular geometry information. Whereas, the
three-dimensional (3D) spatial structure of a molecule, a.k.a molecular
geometry, is one of the most critical factors for determining molecular
physical, chemical, and biological properties. To this end, we propose a novel
Geometry Enhanced Molecular representation learning method (GEM) for Chemical
Representation Learning (ChemRL). At first, we design a geometry-based GNN
architecture that simultaneously models atoms, bonds, and bond angles in a
molecule. To be specific, we devised double graphs for a molecule: The first
one encodes the atom-bond relations; The second one encodes bond-angle
relations. Moreover, on top of the devised GNN architecture, we propose several
novel geometry-level self-supervised learning strategies to learn spatial
knowledge by utilizing the local and global molecular 3D structures. We compare
ChemRL-GEM with various state-of-the-art (SOTA) baselines on different
molecular benchmarks and exhibit that ChemRL-GEM can significantly outperform
all baselines in both regression and classification tasks. For example, the
experimental results show an overall improvement of $8.8\%$ on average compared
to SOTA baselines on the regression tasks, demonstrating the superiority of the
proposed method.
- Abstract(参考訳): 効果的な分子表現学習は、分子特性の予測を促進するために非常に重要である。
グラフニューラルネットワーク(GNN)の最近の進歩は、分子表現学習にGNNを適用することに大きな期待を示している。
さらに、近年の研究では、ラベルが不十分な分子の問題を克服するために、GNNを事前訓練するための自己教師付き学習手法が成功したことも示されている。
しかし、既存のGNNや事前学習戦略は通常、分子の幾何学的情報を完全に活用せずに、トポロジカルグラフデータとして扱う。
一方、分子の3次元空間構造(分子幾何学)は、分子の物理的、化学的、生物学的性質を決定する上で最も重要な要素の1つである。
そこで本研究では,化学表現学習のためのGEM(Geometry Enhanced Molecular representation learning)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
具体的には、分子の二重グラフを考案した: 1つは原子結合関係を符号化し、2つ目は結合-角関係を符号化する。
さらに,考案されたGNNアーキテクチャ上に,局所的およびグローバルな分子3D構造を利用して空間的知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
我々は,ChemRL-GEMを,異なる分子ベンチマーク上での様々な最先端(SOTA)ベースラインと比較し,ChemRL-GEMが回帰および分類タスクにおいて,すべてのベースラインを著しく上回ることを示す。
例えば、実験の結果、回帰タスクのsotaベースラインと比較すると、平均で8.8\%$の全体的な改善を示し、提案手法の優位性を示した。
関連論文リスト
- Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
コンフォーマーアンサンブルを用いた学習の可能性を徹底的に評価するための,最初のMoleculAR Conformer Ensemble Learningベンチマークを導入する。
その結果,コンバータ空間からの直接学習は,様々なタスクやモデルの性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-09-29T20:06:46Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
分子表現学習は、AIによる薬物発見研究において重要な役割を担っている。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T18:02:47Z) - Graph Neural Networks for Molecules [9.04563945965023]
本稿では、GNNとその様々な有機分子への応用について紹介する。
GNNは、ノード機能を反復的に更新するために、汎用的で強力なフレームワークであるメッセージパッシング操作に依存している。
論文 参考訳(メタデータ) (2022-09-12T20:10:07Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - GeomGCL: Geometric Graph Contrastive Learning for Molecular Property
Prediction [47.70253904390288]
本研究では2次元および3次元ビューにまたがる分子の幾何を利用した新しいグラフコントラスト学習法を提案する。
具体的には、分子の2次元グラフと3次元グラフの両方のリッチな情報を適応的に活用するために、2次元幾何学的メッセージパッシングネットワーク(GeomMPNN)を考案する。
論文 参考訳(メタデータ) (2021-09-24T03:55:27Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。