Short-term traffic prediction using physics-aware neural networks
- URL: http://arxiv.org/abs/2109.10253v1
- Date: Tue, 21 Sep 2021 15:31:33 GMT
- Title: Short-term traffic prediction using physics-aware neural networks
- Authors: Mike Pereira, Annika Lang, and Bal\'azs Kulcs\'ar
- Abstract summary: We propose an algorithm performing short-term predictions of the flux of vehicles on a stretch of road.
The algorithm is based on a physics-aware recurrent neural network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose an algorithm performing short-term predictions of
the flux of vehicles on a stretch of road, using past measurements of the flux.
This algorithm is based on a physics-aware recurrent neural network. A
discretization of a macroscopic traffic flow model (using the so-called Traffic
Reaction Model) is embedded in the architecture of the network and yields flux
predictions based on estimated and predicted space-time dependent traffic
parameters. These parameters are themselves obtained using a succession of LSTM
ans simple recurrent neural networks. Besides, on top of the predictions, the
algorithm yields a smoothing of its inputs which is also physically-constrained
by the macroscopic traffic flow model. The algorithm is tested on raw flux
measurements obtained from loop detectors.
Related papers
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - A fast noise filtering algorithm for time series prediction using
recurrent neural networks [0.0]
We examine the internal dynamics of RNNs and establish a set of conditions required for such behavior.
We propose a new approximate algorithm and show that it significantly speeds up the predictive process without loss of accuracy.
arXiv Detail & Related papers (2020-07-16T01:32:48Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
The forecast of traffic flow is indispensable for an efficient intelligent transportation system.
In our work, this prediction is performed with various recurrent neural networks.
Most often the vector output model with gated recurrent units achieved the smallest error on the test set.
arXiv Detail & Related papers (2020-06-08T15:17:58Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.