Online Traffic Density Estimation using Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2504.03483v1
- Date: Fri, 04 Apr 2025 14:41:22 GMT
- Title: Online Traffic Density Estimation using Physics-Informed Neural Networks
- Authors: Dennis Wilkman, Kateryna Morozovska, Karl Henrik Johansson, Matthieu Barreau,
- Abstract summary: In this paper, we introduce a methodology for online approximation of the traffic density using measurements from probe vehicles.<n>The proposed method continuously estimates the real-time traffic density in space and performs model identification with each new set of measurements.
- Score: 5.888531936968298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on the application of Physics-Informed Neural Networks to traffic density estimation have shown to be promising for future developments due to their robustness to model errors and noisy data. In this paper, we introduce a methodology for online approximation of the traffic density using measurements from probe vehicles in two settings: one using the Greenshield model and the other considering a high-fidelity traffic simulation. The proposed method continuously estimates the real-time traffic density in space and performs model identification with each new set of measurements. The density estimate is updated in almost real-time using gradient descent and adaptive weights. In the case of full model knowledge, the resulting algorithm has similar performance to the classical open-loop one. However, in the case of model mismatch, the iterative solution behaves as a closed-loop observer and outperforms the baseline method. Similarly, in the high-fidelity setting, the proposed algorithm correctly reproduces the traffic characteristics.
Related papers
- Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.
We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.
Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - DEEGITS: Deep Learning based Framework for Measuring Heterogenous Traffic State in Challenging Traffic Scenarios [0.0]
This paper presents DEEGITS (Deep Heterogeneous Traffic State Measurement), a comprehensive framework that leverages state-of-the-art convolutional neural network (CNN) techniques to accurately and rapidly detect vehicles and pedestrians.
In this study, we enhance the training dataset through data fusion, enabling simultaneous detection vehicles and pedestrians.
The framework is tested to measure heterogeneous traffic states in mixed traffic conditions.
arXiv Detail & Related papers (2024-11-13T04:49:32Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Short-term traffic prediction using physics-aware neural networks [0.0]
We propose an algorithm performing short-term predictions of the flux of vehicles on a stretch of road.
The algorithm is based on a physics-aware recurrent neural network.
arXiv Detail & Related papers (2021-09-21T15:31:33Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
We propose a kinematic wave based Deep Convolutional Neural Network (Deep CNN) to estimate high resolution traffic speed dynamics from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate kinematic wave theory principles to improve the robustness of existing learning-based estimation methods.
arXiv Detail & Related papers (2021-02-04T21:51:25Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.