RDAnet: A Deep Learning Based Approach for Synthetic Aperture Radar
Image Formation
- URL: http://arxiv.org/abs/2001.08202v2
- Date: Mon, 1 Feb 2021 15:55:07 GMT
- Title: RDAnet: A Deep Learning Based Approach for Synthetic Aperture Radar
Image Formation
- Authors: Andrew Rittenbach (1) and John Paul Walters (1) ((1) University of
Southern California Information Sciences Institute, Arlington VA)
- Abstract summary: We train a deep neural network that performs both the image formation and image processing tasks, integrating the SAR processing pipeline.
Results show that our integrated pipeline can output accurately classified SAR imagery with image quality comparable to those formed using a traditional algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) imaging systems operate by emitting radar
signals from a moving object, such as a satellite, towards the target of
interest. Reflected radar echoes are received and later used by image formation
algorithms to form a SAR image. There is great interest in using SAR images in
computer vision tasks such as classification or automatic target recognition.
Today, however, SAR applications consist of multiple operations: image
formation followed by image processing. In this work, we train a deep neural
network that performs both the image formation and image processing tasks,
integrating the SAR processing pipeline. Results show that our integrated
pipeline can output accurately classified SAR imagery with image quality
comparable to those formed using a traditional algorithm. We believe that this
work is the first demonstration of an integrated neural network based SAR
processing pipeline using real data.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - UAVs and Neural Networks for search and rescue missions [0.0]
We present a method for detecting objects of interest, including cars, humans, and fire, in aerial images captured by unmanned aerial vehicles (UAVs)
To achieve this, we use artificial neural networks and create a dataset for supervised learning.
arXiv Detail & Related papers (2023-10-09T08:27:35Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - An Empirical Study of Remote Sensing Pretraining [117.90699699469639]
We conduct an empirical study of remote sensing pretraining (RSP) on aerial images.
RSP can help deliver distinctive performances in scene recognition tasks.
RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, but it may still suffer from task discrepancies.
arXiv Detail & Related papers (2022-04-06T13:38:11Z) - Toward Data-Driven STAP Radar [23.333816677794115]
We characterize our data-driven approach to space-time adaptive processing (STAP) radar.
We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region.
For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a beamformer.
In an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video.
arXiv Detail & Related papers (2022-01-26T02:28:13Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - Visualization of Deep Transfer Learning In SAR Imagery [0.0]
We consider transfer learning to leverage deep features from a network trained on an EO ships dataset.
By exploring the network activations in the form of class-activation maps, we gain insight on how a deep network interprets a new modality.
arXiv Detail & Related papers (2021-03-20T00:16:15Z) - Fast ultrasonic imaging using end-to-end deep learning [1.0266286487433585]
Deep neural networks (DNNs) are being used for the data pre-processing and the image post-processing steps separately.
We propose a novel deep learning architecture that integrates all three steps to enable end-to-end training.
arXiv Detail & Related papers (2020-09-04T13:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.