論文の概要: Digital Signal Processing Using Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2109.10404v1
- Date: Tue, 21 Sep 2021 18:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 23:56:11.445042
- Title: Digital Signal Processing Using Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークを用いたディジタル信号処理
- Authors: Brian Shevitski, Yijing Watkins, Nicole Man, and Michael Girard
- Abstract要約: 本稿では、RF領域の問題を解決するために特別に設計されたカスタムディープニューラルネットワーク(DNN)を提案する。
本モデルは,自動エンコーダ畳み込みネットワークと変圧器ネットワークを組み合わせることで,特徴抽出と注意のメカニズムを活用する。
また,DNNをトレーニングし,自動変調分類を行い,伝送路効果を推測・補正し,ベースバンドRF信号を直接復調することのできる,新しいオープンデータセットと物理データ拡張モデルを提案する。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently there is great interest in the utility of deep neural networks
(DNNs) for the physical layer of radio frequency (RF) communications. In this
manuscript, we describe a custom DNN specially designed to solve problems in
the RF domain. Our model leverages the mechanisms of feature extraction and
attention through the combination of an autoencoder convolutional network with
a transformer network, to accomplish several important communications network
and digital signals processing (DSP) tasks. We also present a new open dataset
and physical data augmentation model that enables training of DNNs that can
perform automatic modulation classification, infer and correct transmission
channel effects, and directly demodulate baseband RF signals.
- Abstract(参考訳): 現在、無線周波数(RF)通信の物理層に対するディープニューラルネットワーク(DNN)の有用性に大きな関心がある。
本稿では,RF領域の問題を解決するために特別に設計されたDNNについて述べる。
本モデルは,自動エンコーダ畳み込みネットワークとトランスフォーマーネットワークを組み合わせることで,特徴抽出と注意機構を活用し,複数の重要な通信ネットワークとデジタル信号処理(DSP)タスクを実現する。
また,DNNをトレーニングし,自動変調分類を行い,伝送路効果を推測・補正し,ベースバンドRF信号を直接復調することのできる,新しいオープンデータセットと物理データ拡張モデルを提案する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
本稿では,その送信機におけるデータを利用した受信機におけるタスク実行を目的とした,タスク指向コミュニケーションにおける年齢概念について検討する。
送信機-受信機操作は、共同で訓練されたディープニューラルネットワーク(DNN)のエンコーダ-デコーダペアとしてモデル化される。
論文 参考訳(メタデータ) (2023-01-11T04:15:51Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
チャネルのあらゆる変更に適応できるオンライントレーニングフレームワークを導入します。
我々のフレームワークは、非常にダイナミックなチャネル上での最近のニューラルネットワークモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-08-17T02:01:18Z) - Neuromorphic Wireless Cognition: Event-Driven Semantic Communications
for Remote Inference [32.0035037154674]
本稿ではニューロモルフィックな無線インターネット・オブ・Thingsシステムのためのエンドツーエンドの設計を提案する。
各センサ装置は、ニューロモルフィックセンサと、スパイキングニューラルネットワーク(SNN)と、複数のアンテナを備えたインパルス無線送信機を備える。
パイロット、SNNの符号化、SNNの復号化、ハイパーネットワークは、複数のチャネル実現を通じて共同で訓練される。
論文 参考訳(メタデータ) (2022-06-13T11:13:39Z) - Deep Learning for Spectral Filling in Radio Frequency Applications [0.7829352305480285]
本稿では、スペクトルフィリングにディープニューラルネットワークを適用する方法を提案する。
我々は、付加的なメッセージの形で、固定変調信号の「周辺」として、追加情報を送るための新しい変調スキームを学習する。
これにより、帯域幅を増大させることなく、チャネル容量を効果的に増やすことができる。
論文 参考訳(メタデータ) (2022-03-31T20:31:54Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
RFフィンガープリントのための複雑値畳み込みニューラルネットワーク(CNN)を提案する。
我々は,深層学習(dl)技術を用いた無線iotデバイスの指紋認証の問題に注目する。
論文 参考訳(メタデータ) (2021-05-08T03:03:21Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
本稿では、RF通信信号の異なる構造と、送信機ハードウェア障害に起因するスペクトル放射を利用する新しい特徴設計手法を提案する。
提案するDNNの特徴は,拡張性,精度,シグネチャ・アンチ・クローニング,環境摂動に対する非感受性の観点から,分類の堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:19:05Z) - T-WaveNet: Tree-Structured Wavelet Neural Network for Sensor-Based Time
Series Analysis [9.449017120452675]
センサデータ解析のための新しい木構造ウェーブレットニューラルネットワークである emphT-WaveNet を提案する。
T-WaveNetは、センサ情報を既存の技術よりも効果的に表現し、様々なセンサデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-12-10T05:07:28Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z) - A Big Data Enabled Channel Model for 5G Wireless Communication Systems [71.93009775340234]
本稿では,ビッグデータ解析,特に無線通信およびチャネルモデリングにおける機械学習アルゴリズムの様々な応用について検討する。
本稿では,ビッグデータと機械学習を利用した無線チャネルモデルフレームワークを提案する。
提案するチャネルモデルは、フィードフォワードニューラルネットワーク(FNN)やラジアル基底関数ニューラルネットワーク(RBF-NN)を含む、人工ニューラルネットワーク(ANN)に基づいている。
論文 参考訳(メタデータ) (2020-02-28T05:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。