論文の概要: AI in Osteoporosis
- arxiv url: http://arxiv.org/abs/2109.10478v1
- Date: Wed, 22 Sep 2021 01:37:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 21:52:26.807397
- Title: AI in Osteoporosis
- Title(参考訳): 骨粗しょう症におけるAI
- Authors: Sokratis Makrogiannis and Keni Zheng
- Abstract要約: 本章は, スパース近似への関心が高まり, 外傷性骨評価と骨粗しょう症診断の方法を探究し, 評価する。
まず、テクスチャ表現と分類手法、キーポイントのバグのようなパッチベースの手法、より最近のディープニューラルネットワークについて述べる。
骨X線写真における骨粗しょう性データセットのクロスバリデーション結果について報告し, 異なるカテゴリーの方法を用いて得られた結果と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this chapter we explore and evaluate methods for trabecular bone
characterization and osteoporosis diagnosis with increased interest in sparse
approximations. We first describe texture representation and classification
techniques, patch-based methods such as Bag of Keypoints, and more recent deep
neural networks. Then we introduce the concept of sparse representations for
pattern recognition and we detail integrative sparse analysis methods and
classifier decision fusion methods. We report cross-validation results on
osteoporosis datasets of bone radiographs and compare the results produced by
the different categories of methods. We conclude that advances in the AI and
machine learning fields have enabled the development of methods that can be
used as diagnostic tools in clinical settings.
- Abstract(参考訳): 本章では, スパース近似への関心が高まり, 気管骨評価法と骨粗しょう症診断法について検討した。
まず,テクスチャ表現と分類手法,キーポイントの袋などのパッチベース手法,さらに最近ではディープニューラルネットワークについて述べる。
次に,パターン認識のためのスパース表現の概念を紹介し,積分スパース解析法と分類子決定融合法について詳述する。
骨X線写真における骨粗しょう性データセットのクロスバリデーション結果を報告し, 異なるカテゴリーの方法による結果と比較した。
結論として,aiおよび機械学習分野の進歩により,臨床現場で診断ツールとして使用できる手法の開発が可能となった。
関連論文リスト
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Evaluating Explanatory Capabilities of Machine Learning Models in Medical Diagnostics: A Human-in-the-Loop Approach [0.0]
我々は、膵癌治療の確立に関係するさまざまな特徴の重要性を確立するために、Human-in-the-Loop関連技術と医療ガイドラインをドメイン知識の源泉として使用しています。
本稿では,説明結果の解釈を容易にするため,重み付きジャカード類似度係数などの類似度尺度を提案する。
論文 参考訳(メタデータ) (2024-03-28T20:11:34Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Noise-reducing attention cross fusion learning transformer for
histological image classification of osteosarcoma [2.8265965924600276]
本研究の目的は,人工知能を用いて骨肉腫の組織像を分類し,腫瘍の生存と壊死を評価することである。
本稿では,ノイズ低減畳み込みオートエンコーダと特徴融合学習を統合した典型的なトランスフォーマー画像分類フレームワークを提案する。
本手法は, 骨肉腫の診断を支援するため, 各種評価指標における従来型および深層学習法よりも99.17%の精度で優れていた。
論文 参考訳(メタデータ) (2022-04-29T00:57:39Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Automatic Breast Lesion Classification by Joint Neural Analysis of
Mammography and Ultrasound [1.9814912982226993]
そこで本研究では,乳がん病変を各乳腺造影像および超音波画像から分類する深層学習法を提案する。
提案されたアプローチは、GoogleNetアーキテクチャに基づいており、データのために2つのトレーニングステップで微調整されています。
AUCは0.94で、単一のモダリティで訓練された最先端のモデルより優れている。
論文 参考訳(メタデータ) (2020-09-23T09:08:24Z) - An Approach for Clustering Subjects According to Similarities in Cell
Distributions within Biopsies [0.0]
本研究は, がん患者を対象に, 生検から抽出した特徴に基づいて, 新規かつ解釈可能な方法を提案する。
肺腺癌I期患者のヘマトキシリンおよびエオシン(H&E)染色組織について検討した。
論文 参考訳(メタデータ) (2020-06-30T22:30:58Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。