Measurement-dependent erasure of distinguishability for the observation
of interference in an unbalanced SU(1,1) interferometer
- URL: http://arxiv.org/abs/2109.10592v3
- Date: Tue, 4 Jan 2022 03:57:57 GMT
- Title: Measurement-dependent erasure of distinguishability for the observation
of interference in an unbalanced SU(1,1) interferometer
- Authors: Nan Huo, Liang Cui, Yunxiao Zhang, Wen Zhao, Xueshi Guo, Z. Y. Ou, and
Xiaoying Li
- Abstract summary: Quantum interference can disappear with the mere possibility of distinguishability without performing the act.
We create such distinguishability in an unbalanced SU (1,1) interferometer and observe no interference in the direct photodetection of the outputs.
Here, we report a method of homodyne detection that can also recover interference effect.
- Score: 3.2646353020000687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that quantum interference can disappear with the mere possibility
of distinguishability without actually performing the act. We create such
distinguishability in an unbalanced SU(1,1) interferometer and indeed observe
no interference in the direct photodetection of the outputs. On the other hand,
such distinguishability can be erased with a projective measurement. Here, we
report a method of homodyne detection that can also recover interference
effect. We find that it is the indistinguishability in amplitude measurement
that leads to the recovery of interference, and the quantum nature of homodyne
detection and the detector's slow response time both play an essential role.
This is different from the quantum eraser schemes mentioned above. It
demonstrates that quantum interference occurs in the measurement processes.
With no need for path compensation, the unbalanced interferometers studied here
should have practical applications in quantum metrology and sensing.
Related papers
- Tracing quantum correlations back to collective interferences [0.04096453902709291]
We investigate nonclassical correlations between two quantum systems in terms of quantum interferences between collective states of the two systems.
We show that the relation between probability currents and correlations can be represented by continuous conditional (quasi)probability currents through the interferometer.
Our results help to explain the meaning of nonlocal correlations in quantum mechanics, and support Feynman's claim that interference is the origin of all quantum phenomena.
arXiv Detail & Related papers (2024-01-30T06:15:53Z) - Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Enhanced nonlinear interferometry via seeding [0.5760489824496111]
We analyse a nonlinear interferometer in the presence of internal losses and inefficient detectors.
We derive analytical expressions for the interference visibility, contrast, phase sensitivity, and signal-to-noise ratio.
Our results expand the nonlinear interferometry capabilities in the field of quantum imaging, metrology, and spectroscopy.
arXiv Detail & Related papers (2022-09-14T16:13:14Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Augmenting the Sensing Performance of Entangled Photon Pairs through
Asymmetry [0.0]
We analyze theoretically and experimentally cases of asymmetric detection, stimulation, and loss within a quantum nonlinear interferometer of entangled pairs.
Our findings can improve the performance of setups that rely on direct detection of entangled pairs.
arXiv Detail & Related papers (2021-06-16T17:23:27Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.