Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
- URL: http://arxiv.org/abs/2109.10683v1
- Date: Wed, 22 Sep 2021 12:24:02 GMT
- Title: Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
- Authors: Devanshu Arya, Deepak K. Gupta, Stevan Rudinac and Marcel Worring
- Abstract summary: We present HyperMSG, a novel hypergraph learning framework.
It adapts to the data and task by learning an attention weight associated with each node's degree centrality.
It is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets.
- Score: 21.606287447052757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are the most ubiquitous data structures for representing relational
datasets and performing inferences in them. They model, however, only pairwise
relations between nodes and are not designed for encoding the higher-order
relations. This drawback is mitigated by hypergraphs, in which an edge can
connect an arbitrary number of nodes. Most hypergraph learning approaches
convert the hypergraph structure to that of a graph and then deploy existing
geometric deep learning methods. This transformation leads to information loss,
and sub-optimal exploitation of the hypergraph's expressive power. We present
HyperMSG, a novel hypergraph learning framework that uses a modular two-level
neural message passing strategy to accurately and efficiently propagate
information within each hyperedge and across the hyperedges. HyperMSG adapts to
the data and task by learning an attention weight associated with each node's
degree centrality. Such a mechanism quantifies both local and global importance
of a node, capturing the structural properties of a hypergraph. HyperMSG is
inductive, allowing inference on previously unseen nodes. Further, it is robust
and outperforms state-of-the-art hypergraph learning methods on a wide range of
tasks and datasets. Finally, we demonstrate the effectiveness of HyperMSG in
learning multimodal relations through detailed experimentation on a challenging
multimedia dataset.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hypergraph-MLP: Learning on Hypergraphs without Message Passing [41.43504601820411]
Many hypergraph neural networks leverage message passing over hypergraph structures to enhance node representation learning.
We propose an alternative approach where we integrate the information about hypergraph structures into training supervision without explicit message passing.
Specifically, we introduce Hypergraph-MLP, a novel learning framework for hypergraph-structured data.
arXiv Detail & Related papers (2023-12-15T13:30:04Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
We present HyperSAGE, a novel hypergraph learning framework that uses a two-level neural message passing strategy to accurately and efficiently propagate information through hypergraphs.
We show that HyperSAGE outperforms state-of-the-art hypergraph learning methods on representative benchmark datasets.
arXiv Detail & Related papers (2020-10-09T13:28:06Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.