Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes
- URL: http://arxiv.org/abs/2306.12281v2
- Date: Thu, 03 Oct 2024 18:04:31 GMT
- Title: Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes
- Authors: Kacper Prech, Patrick P. Potts,
- Abstract summary: We derive a novel fluctuation theorem and the associated second law of information thermodynamics.
In our second law, the entropy production is bounded by the coarse-grained entropy production which is inferrable from the measurement outcomes.
We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
- Score: 0.0
- License:
- Abstract: Fluctuation theorems and the second law of thermodynamics are powerful relations constraining the behavior of out-of-equilibrium systems. While there exist generalizations of these relations to feedback controlled quantum systems, their applicability is limited, in particular when considering strong and continuous measurements. In this letter, we overcome this shortcoming by deriving a novel fluctuation theorem, and the associated second law of information thermodynamics, which remain applicable in arbitrary feedback control scenarios. In our second law, the entropy production is bounded by the coarse-grained entropy production which is inferrable from the measurement outcomes, an experimentally accessible quantity that does not diverge even under strong continuous measurements. We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
Related papers
- A family of thermodynamic uncertainty relations valid for general fluctuation theorems [0.0]
We derive a family of TURs that explores higher order moments of the entropy production.
The resulting bound holds in both classical and quantum regimes.
We draw a connection between our TURs and the existence of correlations between the entropy production and the thermodynamic quantity under consideration.
arXiv Detail & Related papers (2024-07-15T02:00:53Z) - Conditional fluctuation theorems and entropy production for monitored quantum systems under imperfect detection [0.7864304771129751]
We find a universal fluctuation relation that links thermodynamic entropy production and information-theoretical irreversibility along single trajectories in inefficient monitoring setups.
We illustrate our findings with a driven-dissipative two-level system following quantum jump trajectories and discuss the experimental applicability of our results for thermodynamic inference.
arXiv Detail & Related papers (2023-08-16T16:47:21Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Growth of entanglement entropy under local projective measurements [0.0]
We show that local projective measurements induce a qualitative modification of the time-growth of the entanglement entropy.
In the stationary regime, the logarithmic behavior of the entanglement entropy do not survive in the thermodynamic limit.
We numerically show the existence of a single area-law phase for the entanglement entropy.
arXiv Detail & Related papers (2021-09-22T16:56:35Z) - A quantum fluctuation theorem for any Lindblad master equation [0.0]
We present a general quantum fluctuation theorem for the entropy production of an open quantum system coupled to multiple environments.
The theorem is genuinely quantum, as it can be expressed in terms of conservation of a Hermitian operator.
We show that the fluctuation theorem amounts to a relation between time-reversed dynamics of the global density matrix and a two-time correlation function.
arXiv Detail & Related papers (2021-08-12T19:28:38Z) - Contributions from populations and coherences in non-equilibrium entropy
production [0.0]
entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences.
We argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings.
Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian.
arXiv Detail & Related papers (2021-02-22T18:30:05Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.