論文の概要: Secure PAC Bayesian Regression via Real Shamir Secret Sharing
- arxiv url: http://arxiv.org/abs/2109.11200v3
- Date: Mon, 17 Apr 2023 07:07:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 01:13:20.085479
- Title: Secure PAC Bayesian Regression via Real Shamir Secret Sharing
- Title(参考訳): 本物のシャミール秘密共有によるpacベイズ回帰の安全性
- Authors: Jaron Skovsted Gundersen, Bulut Kuskonmaz, Rafael Wisniewski
- Abstract要約: 本稿では,最近記述された「実数秘密共有」技術を利用した線形モデル学習プロトコルを提案する。
我々は、複数のパーティが異なるデータインスタンスを保持し、データのプライバシを放棄する意思のない状況を考える。
本稿では,セキュアな逆法とセキュアなガウス除去法という2つの方法を提案する。
- 参考スコア(独自算出の注目度): 2.578242050187029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common approach of system identification and machine learning is to
generate a model by using training data to predict the test data instances as
accurate as possible. Nonetheless, concerns about data privacy are increasingly
raised, but not always addressed. We present a secure protocol for learning a
linear model relying on recently described technique called real number secret
sharing. We take as our starting point the PAC Bayesian bounds and deduce a
closed form for the model parameters which depends on the data and the prior
from the PAC Bayesian bounds. To obtain the model parameters one needs to solve
a linear system. However, we consider the situation where several parties hold
different data instances and they are not willing to give up the privacy of the
data. Hence, we suggest to use real number secret sharing and multiparty
computation to share the data and solve the linear regression in a secure way
without violating the privacy of data. We suggest two methods; a secure inverse
method and a secure Gaussian elimination method, and compare these methods at
the end. The benefit of using secret sharing directly on real numbers is
reflected in the simplicity of the protocols and the number of rounds needed.
However, this comes with the drawback that a share might leak a small amount of
information, but in our analysis we argue that the leakage is small.
- Abstract(参考訳): システム識別と機械学習の一般的なアプローチは、トレーニングデータを使用してテストデータインスタンスを可能な限り正確に予測してモデルを生成することだ。
それでも、データのプライバシーに関する懸念はますます高まっている。
本稿では,最近紹介した実数シークレット共有手法に基づく線形モデル学習のためのセキュアなプロトコルを提案する。
我々はPACベイズ境界を出発点として、PACベイズ境界からデータと先行に依存するモデルパラメータの閉形式を導出する。
モデルパラメータを得るためには、線形システムを解く必要がある。
しかし、複数の当事者が異なるデータインスタンスを持っていて、データのプライバシを諦めたくないという状況を考える。
したがって、データのプライバシーを侵害することなく、実数秘密共有とマルチパーティ計算を用いてデータを共有し、線形回帰を安全に解決することを提案する。
安全な逆法と安全なガウス除去法という2つの方法を提案し,最後にこれらの方法を比較する。
秘密の共有を直接実数で使用する利点は、プロトコルの単純さと必要なラウンド数に反映されている。
しかし、これはシェアが少量の情報をリークする可能性があるという欠点が伴うが、我々の分析では、リークは小さいと論じている。
関連論文リスト
- Data Lineage Inference: Uncovering Privacy Vulnerabilities of Dataset Pruning [31.888075470799908]
余剰集合内のデータがモデルトレーニングの前にのみ使用される場合でも、攻撃によってプルーニングフェーズのメンバシップ状態が検出可能であることを示す。
我々は、Data-Centric Membership Inferenceと呼ばれる新しいタスクを導入し、Data Lineage Inferenceというデータ中心のプライバシ推論パラダイムを提案する。
異なるプライバシリークのレベルが異なり、同じプルーニング手法でも異なるプライバシリスクを異なるプルーニング率で提示できることがわかった。
論文 参考訳(メタデータ) (2024-11-24T11:46:59Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
この情報漏洩のリスクを減らし、最先端の差分プライベートアルゴリズムを使っても、無料ではない。
本稿では,異なるプライバシ保証を持つフェデレーションモデルにおいて,様々な当事者が協調的に洗練する表現学習の目的について考察する。
同じ小さなプライバシ予算の下で、以前の作業よりも大幅にパフォーマンスが向上するのを観察する。
論文 参考訳(メタデータ) (2023-09-11T14:46:55Z) - Differentially Private Linear Regression with Linked Data [3.9325957466009203]
コンピュータ科学の数学的概念である差分プライバシーは、堅牢なプライバシー保証を提供する上昇するツールである。
最近の研究は、個々の統計および機械学習タスクの微分プライベートバージョンの開発に焦点を当てている。
相関データを用いた線形回帰のための2つの微分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-01T21:00:19Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
本稿では秘密共有(SS)に基づくプライバシー保護型GPR手法を提案する。
コンフュージョン補正(confusion-correction)というアイデアを通じて,新たなSSベースの指数演算を導出し,Cholesky分解に基づくSSベースの行列逆変換アルゴリズムを構築する。
実験結果から,データプライバシ保護の前提として,提案手法が妥当な精度と効率を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-26T08:17:51Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
我々は、N-party Federated Learningのための最初のブロックチェーンベースのフレームワークBEASを紹介する。
グラデーションプルーニングを使用したトレーニングデータの厳格なプライバシー保証を提供する。
異常検出プロトコルは、データ汚染攻撃のリスクを最小限に抑えるために使用される。
また、異種学習環境における早期収束を防止するための新しいプロトコルも定義する。
論文 参考訳(メタデータ) (2022-02-06T17:11:14Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z) - Privacy-Preserving Gaussian Process Regression -- A Modular Approach to
the Application of Homomorphic Encryption [4.1499725848998965]
ホモモルフィック暗号化(FHE)は、データを暗号化しながら計算することができる。
ガウス過程回帰のような一般的な機械学習アルゴリズムは、FHEにはあまり適していない。
保護を必要とするワークフローのセンシティブなステップのみにFHEを適用するモジュラーアプローチは、あるパーティがデータに対して予測できることを示している。
論文 参考訳(メタデータ) (2020-01-28T11:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。