論文の概要: The Hilti SLAM Challenge Dataset
- arxiv url: http://arxiv.org/abs/2109.11316v1
- Date: Thu, 23 Sep 2021 12:02:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-24 14:53:13.347637
- Title: The Hilti SLAM Challenge Dataset
- Title(参考訳): Hilti SLAM Challengeデータセット
- Authors: Michael Helmberger, Kristian Morin, Nitish Kumar, Danwei Wang, Yufeng
Yue, Giovanni Cioffi, Davide Scaramuzza
- Abstract要約: 構築環境は、同時局所化とマッピング(SLAM)アルゴリズムに難しい問題を引き起こす。
本研究を支援するために,Hilti SLAM Challengeデータセットという新しいデータセットを提案する。
各データセットには正確な基底真理が含まれており、SLAM結果を直接テストすることができる。
- 参考スコア(独自算出の注目度): 41.091844019181735
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate and robust pose estimation is a fundamental capability for
autonomous systems to navigate, map and perform tasks. Particularly,
construction environments pose challenging problem to Simultaneous Localization
and Mapping (SLAM) algorithms due to sparsity, varying illumination conditions,
and dynamic objects. Current academic research in SLAM is focused on developing
more accurate and robust algorithms for example by fusing different sensor
modalities. To help this research, we propose a new dataset, the Hilti SLAM
Challenge Dataset. The sensor platform used to collect this dataset contains a
number of visual, lidar and inertial sensors which have all been rigorously
calibrated. All data is temporally aligned to support precise multi-sensor
fusion. Each dataset includes accurate ground truth to allow direct testing of
SLAM results. Raw data as well as intrinsic and extrinsic sensor calibration
data from twelve datasets in various environments is provided. Each environment
represents common scenarios found in building construction sites in various
stages of completion.
- Abstract(参考訳): 正確で堅牢なポーズ推定は、自律システムがタスクをナビゲート、マップ、実行するための基本的な能力である。
特に、構成環境は、スパーシティ、照明条件の変化、動的オブジェクトなどにより、同時ローカライゼーション・マッピング(slam)アルゴリズムに困難な問題を引き起こす。
SLAMにおける現在の学術研究は、例えば異なるセンサーのモダリティを融合させることによって、より正確で堅牢なアルゴリズムの開発に焦点を当てている。
本研究を支援するために,Hilti SLAM Challenge Datasetという新しいデータセットを提案する。
このデータセットの収集に使用されるセンサープラットフォームには、視覚的、ライダー的、慣性的なセンサーが多数含まれている。
すべてのデータは時間的に整列し、正確なマルチセンサー融合をサポートする。
各データセットは、slam結果を直接テストできる正確な根拠真理を含んでいる。
各種環境における12のデータセットからの生データ及び内在及び外在的なセンサキャリブレーションデータを提供する。
各環境は、完成の様々な段階で建設現場で見られる一般的なシナリオを表している。
関連論文リスト
- DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping [7.050468075029598]
本研究では,屋内・屋外環境における3次元マッピングのための総合的マルチセンサ・データセットを提案する。
このデータセットは、赤外線カメラ、深度カメラ、LiDAR、および4Dミリ波レーダーからのデータで構成されている。
さまざまなSLAMアルゴリズムを使用してデータセットを処理し、異なるシナリオにおけるアルゴリズムのパフォーマンスの違いを明らかにする。
論文 参考訳(メタデータ) (2024-04-15T09:49:33Z) - GDTM: An Indoor Geospatial Tracking Dataset with Distributed Multimodal
Sensors [9.8714071146137]
GDTMは、分散マルチモーダルセンサと再構成可能なセンサノード配置を備えた、マルチモーダルオブジェクトトラッキングのための9時間のデータセットである。
我々のデータセットは、マルチモーダルデータ処理のためのアーキテクチャの最適化など、いくつかの研究課題の探索を可能にする。
論文 参考訳(メタデータ) (2024-02-21T21:24:57Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
不正確または破損したデータのトレーニングは、モデルバイアスとハマーズ一般化能力を誘導する。
本稿では,深度推定と再構成における高密度3次元視覚課題に対するセンサ誤差の影響について検討する。
論文 参考訳(メタデータ) (2023-03-26T22:32:44Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
デプロイ可能なディープラーニングアーキテクチャの準備とトレーニングには、さまざまなトラフィックシナリオに適したモデルが必要である。
インドなどいくつかの発展途上国で見られる非構造的で複雑な運転レイアウトは、これらのモデルに挑戦している。
我々は、複数のカメラと12kの注釈付き駆動LiDARフレームを備えたLiDARセンサーのマルチモーダルデータからなる新しいデータセットIDD-3Dを構築した。
論文 参考訳(メタデータ) (2022-10-23T23:03:17Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - Learning to Detect Fortified Areas [0.0]
本研究では,道路,歩道,駐車場,舗装された自動車道,テラスなどによって,ある表面のどの部分が要塞化されているのかを分類する問題を考察する。
本稿では,すべてのセンサシステムからデータを新しい共通表現に変換するニューラルネット埋め込みアーキテクチャを設計し,アルゴリズムによる解を提案する。
論文 参考訳(メタデータ) (2021-05-26T08:03:42Z) - SpaceNet 6: Multi-Sensor All Weather Mapping Dataset [13.715388432549373]
オープンなMulti-Sensor All Weather Mapping (MSAW)データセットと課題について述べる。
MSAWは複数の重なり合う集合体を120 km2で覆っており、48,000以上のユニークな建物フットプリントラベルがアノテートされている。
我々は,SARデータを用いた足跡抽出のためのベースラインとベンチマークを提案し,光学データに基づいて事前訓練された最先端セグメンテーションモデルを発見し,SARで訓練した。
論文 参考訳(メタデータ) (2020-04-14T13:43:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。