論文の概要: MCTS Based Agents for Multistage Single-Player Card Game
- arxiv url: http://arxiv.org/abs/2109.12112v1
- Date: Fri, 24 Sep 2021 10:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-28 15:53:55.907998
- Title: MCTS Based Agents for Multistage Single-Player Card Game
- Title(参考訳): MCTSを用いた多段シングルプレイヤーカードゲーム用エージェント
- Authors: Konrad Godlewski, Bartosz Sawicki
- Abstract要約: この記事では、カードゲームLord of the RingsにおけるMonte Carlo Tree Searchアルゴリズムの使用について紹介する。
主な課題はゲーム力学の複雑さであり、各ラウンドは5つの決定段階と2つのランダムステージから構成される。
様々な意思決定アルゴリズムをテストするために,ゲームシミュレータが実装されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The article presents the use of Monte Carlo Tree Search algorithms for the
card game Lord of the Rings. The main challenge was the complexity of the game
mechanics, in which each round consists of 5 decision stages and 2 random
stages. To test various decision-making algorithms, a game simulator has been
implemented. The research covered an agent based on expert rules, using flat
Monte-Carlo search, as well as complete MCTS-UCB. Moreover different playout
strategies has been compared. As a result of experiments, an optimal (assuming
a limited time) combination of algorithms were formulated. The developed MCTS
based method have demonstrated a advantage over agent with expert knowledge.
- Abstract(参考訳): この記事では、カードゲームLord of the RingsにおけるMonte Carlo Tree Searchアルゴリズムの使用について紹介する。
主な課題はゲーム機構の複雑さであり、各ラウンドは5つの決定段階と2つのランダムステージで構成される。
様々な意思決定アルゴリズムをテストするために,ゲームシミュレータが実装されている。
この研究は、フラットなモンテカルロ探索と完全なMCTS-UCBを用いて、専門家の規則に基づくエージェントをカバーした。
また、プレーアウト戦略も異なる。
実験の結果、アルゴリズムの最適(限られた時間を想定した)組み合わせが定式化された。
MCTSをベースとした手法は,専門知識を持つエージェントよりも優れていることを示す。
関連論文リスト
- Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities [69.34646544774161]
我々は、各アームへのリクエストの到着とプレイヤーへのリクエストの割り当てポリシーをキャプチャするマルチプレイヤーマルチアーム・バンディット(MAB)モデルの新しいバリエーションを定式化する。
課題は、プレイヤーが最適な腕引きプロファイルに従って腕を選択するように分散学習アルゴリズムを設計する方法である。
我々は,Mラウンドのみの最適腕引きプロファイルにおいて,プレイヤーがコンセンサスに達することを保証した反復分散アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-08-20T13:57:00Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - Proof Number Based Monte-Carlo Tree Search [1.93674821880689]
本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
本研究は,MCTS木に蓄積された証明値と防腐数から得られる付加的な知識を活用可能な3つの領域を定義する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
論文 参考訳(メタデータ) (2023-03-16T16:27:07Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
固定ゼロサムゲームにおける繰り返しプレイからの学習は、ゲーム理論とオンライン学習における古典的な問題である。
提案手法は,3つの性能基準の下で,良好な保証を同時に享受できる1つのパラメータフリーアルゴリズムである。
本アルゴリズムは,ある特性を満たすブラックボックスベースラーナー群に対するメタアルゴリズムを用いた2層構造に基づく。
論文 参考訳(メタデータ) (2022-01-30T06:10:04Z) - Optimisation of MCTS Player for The Lord of the Rings: The Card Game [0.0]
本稿では,モンテカルロツリーサーチ(MCTS)手法を用いて,人気カードゲーム「指輪のロード」の人工プレイヤーを作成する研究について述べる。
論文 参考訳(メタデータ) (2021-09-24T14:42:32Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Monte Carlo Tree Search: A Review of Recent Modifications and
Applications [0.17205106391379024]
モンテカルロツリー検索(MCTS)は、ゲームプレイボットを設計したり、連続的な決定問題を解決するための強力なアプローチです。
この方法は、探索と搾取のバランスをとるインテリジェントな木探索に依存している。
しかし、この方法はより複雑なゲームでは最先端の技術となっている。
論文 参考訳(メタデータ) (2021-03-08T17:44:15Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
コンビナーシャルバンディットはマルチアームバンディットを一般化し、エージェントが腕のセットを選択し、選択したセットに含まれる各腕の騒々しい報酬を観察します。
我々は, 最善の腕を一定の信頼度で識別する純粋爆発問題と, 応答集合の構造が動作集合の1つと異なるような, より一般的な設定に注目する。
有限多面体に対するプロジェクションフリーオンライン学習アルゴリズムに基づいて、凸的に最適であり、競争力のある経験的性能を持つ最初の計算効率の良いアルゴリズムである。
論文 参考訳(メタデータ) (2021-01-21T10:35:09Z) - Playing Carcassonne with Monte Carlo Tree Search [0.0]
我々は,モンテカルロ木探索 (MCTS) とラピッドアクション値推定 (MCTS-RAVE) をカーカッソンヌのゲームで使用することを検討した。
MCTSをベースとした手法とStar2.5アルゴリズムの長所を比較し,カーカッソンヌのゲームにおける競争結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-09-27T22:35:53Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
モンテカルロ・ツリー・サーチ(MCTS)と深部強化学習の組み合わせは,2プレイヤー完全情報ゲームにおける最先端の手法である。
本稿では,MCTS の変種を利用した探索アルゴリズムについて述べる。1) 潜在的に有界な報酬を持つゲームに対する新たなアクション値正規化機構,2) 効果的な探索並列化を可能にする仮想損失関数の定義,3) 世代ごとのセルフプレイによって訓練されたポリシーネットワークについて述べる。
論文 参考訳(メタデータ) (2020-05-22T18:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。