論文の概要: Proof Number Based Monte-Carlo Tree Search
- arxiv url: http://arxiv.org/abs/2303.09449v4
- Date: Wed, 29 May 2024 06:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 11:43:58.675480
- Title: Proof Number Based Monte-Carlo Tree Search
- Title(参考訳): 証明数に基づくモンテカルロ木探索
- Authors: Jakub Kowalski, Elliot Doe, Mark H. M. Winands, Daniel Górski, Dennis J. N. J. Soemers,
- Abstract要約: 本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
本研究は,MCTS木に蓄積された証明値と防腐数から得られる付加的な知識を活用可能な3つの領域を定義する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
- 参考スコア(独自算出の注目度): 1.93674821880689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a new game-search algorithm, PN-MCTS, which combines Monte-Carlo Tree Search (MCTS) and Proof-Number Search (PNS). These two algorithms have been successfully applied for decision making in a range of domains. We define three areas where the additional knowledge provided by the proof and disproof numbers gathered in MCTS trees might be used: final move selection, solving subtrees, and the UCB1 selection mechanism. We test all possible combinations on different time settings, playing against vanilla UCT on several games: Lines of Action ($7$$\times$$7$ and $8$$\times$$8$ board sizes), MiniShogi, Knightthrough, and Awari. Furthermore, we extend this new algorithm to properly address games with draws, like Awari, by adding an additional layer of PNS on top of the MCTS tree. The experiments show that PN-MCTS is able to outperform MCTS in all tested game domains, achieving win rates up to 96.2% for Lines of Action.
- Abstract(参考訳): 本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
これらの2つのアルゴリズムは、様々な領域における意思決定に成功している。
我々は,MCTS木に集められた証明と反証数によって得られる付加的な知識を,最終移動選択,サブツリーの解法, UCB1選択機構という3つの領域で定義する。
さまざまな時間設定で可能な組み合わせをすべてテストし、いくつかのゲームでバニラUCTと対戦する: Lines of Action(7$\times$7$と8$\times$8$のボードサイズ)、MiniShogi、Knightthrough、Awari。
さらに,新たなアルゴリズムを拡張して,MCTSツリー上にPNSの付加層を追加することで,Awariのようなドローを持つゲームに適切に対処する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
関連論文リスト
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Can Large Language Models Play Games? A Case Study of A Self-Play
Approach [61.15761840203145]
LLM(Large Language Models)は、インターネットからの広範なデータを利用して、幅広い事前知識を格納する。
Monte-Carlo Tree Search (MCTS)は、信頼性の高い意思決定ソリューションを提供する検索アルゴリズムである。
この研究は、ターンベースのゼロサムゲームを効率的に解決するために、MCTSセルフプレイでLLMを活性化させる革新的なアプローチを導入している。
論文 参考訳(メタデータ) (2024-03-08T19:16:29Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Combining Monte-Carlo Tree Search with Proof-Number Search [5.354801701968199]
Proof-Number Search (PNS) と Monte-Carlo Tree Search (MCTS) は様々なゲームにおいて意思決定に成功している。
本稿では,この2つの木探索手法を組み合わせたPN-MCTSという新しい手法を提案する。
実験の結果、PN-MCTSはLines of Action、MiniShogi、Knightthrough、Awariなどいくつかのゲームで基本MCTSを上回っ、94.0%の勝利率を記録した。
論文 参考訳(メタデータ) (2022-06-08T15:28:42Z) - On the Evolution of the MCTS Upper Confidence Bounds for Trees by Means
of Evolutionary Algorithms in the Game of Carcassonne [0.0]
Monte Carlo Tree Search (MCTS) は最適な決定を探索するためのサンプリング最優先の手法である。
我々は、進化的アルゴリズム(EA)を用いて、木上の信頼境界(UCT)の数学的表現に代えて、数学的表現を進化させる。
ES-MCTSコントローラは、堅牢なUCTコントローラを含む、これらの10個のインテリジェントコントローラよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-12-17T18:06:21Z) - MCTS Based Agents for Multistage Single-Player Card Game [0.0]
この記事では、カードゲームLord of the RingsにおけるMonte Carlo Tree Searchアルゴリズムの使用について紹介する。
主な課題はゲーム力学の複雑さであり、各ラウンドは5つの決定段階と2つのランダムステージから構成される。
様々な意思決定アルゴリズムをテストするために,ゲームシミュレータが実装されている。
論文 参考訳(メタデータ) (2021-09-24T10:56:54Z) - Dual Monte Carlo Tree Search [0.0]
我々はDual MCTSが、様々な対称ゲームや非対称ゲームにおいて最も広く使われているニューラルMCTSアルゴリズムであるAlphaZeroよりも優れていることを示す。
デュアルMCTSは、2つの異なる検索木、単一のディープニューラルネットワーク、PUCB、スライドウィンドウ、およびepsilon-greedyアルゴリズムの組み合わせを使用して検索木のための新しい更新技術を使用しています。
論文 参考訳(メタデータ) (2021-03-21T23:34:11Z) - Almost Optimal Algorithms for Two-player Markov Games with Linear
Function Approximation [92.99933928528797]
同時動作による2プレイヤーゼロサムマルコフゲームの強化学習について検討した。
我々は,「不確かさの最適性」に基づくアルゴリズムナッシュ-UCRL-VTRを提案する。
我々は、Nash-UCRL-VTR が $tildeO(dHsqrtT)$ regret を確実に達成できることを示し、$d$ は線型関数次元である。
論文 参考訳(メタデータ) (2021-02-15T09:09:16Z) - Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search [66.34387649910046]
モンテカルロ木探索(MCTS)は、囲碁やアタリゲームなど多くの領域で最先端の結果を得た。
我々は,現在の検索状況の不確かさを予測し,その結果を用いて検索をやめるべきかどうかを判断することで,この目標を達成することを提案する。
論文 参考訳(メタデータ) (2020-12-14T19:49:25Z) - On Effective Parallelization of Monte Carlo Tree Search [51.15940034629022]
モンテカルロ木探索(MCTS)は、探索木を構築するためにかなりの数のロールアウトを必要とするため、計算コストがかかる。
効果的な並列MCTSアルゴリズムを設計する方法は、体系的に研究されておらず、まだよく分かっていない。
我々は,より効率的な並列MCTSアルゴリズムの設計に,提案する必要条件をどのように適用できるかを実証する。
論文 参考訳(メタデータ) (2020-06-15T21:36:00Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
モンテカルロ・ツリー・サーチ(MCTS)と深部強化学習の組み合わせは,2プレイヤー完全情報ゲームにおける最先端の手法である。
本稿では,MCTS の変種を利用した探索アルゴリズムについて述べる。1) 潜在的に有界な報酬を持つゲームに対する新たなアクション値正規化機構,2) 効果的な探索並列化を可能にする仮想損失関数の定義,3) 世代ごとのセルフプレイによって訓練されたポリシーネットワークについて述べる。
論文 参考訳(メタデータ) (2020-05-22T18:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。