論文の概要: Short-Term Load Forecasting Using Time Pooling Deep Recurrent Neural
Network
- arxiv url: http://arxiv.org/abs/2109.12498v1
- Date: Sun, 26 Sep 2021 05:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 06:45:53.353412
- Title: Short-Term Load Forecasting Using Time Pooling Deep Recurrent Neural
Network
- Title(参考訳): 時間プール型ディープリカレントニューラルネットワークによる短期負荷予測
- Authors: Elahe Khoshbakhti Vaygan, Roozbeh Rajabi, Abouzar Estebsari
- Abstract要約: 再生可能エネルギー源と電気自動車などの新興負荷をスマートグリッドに統合することは、配電系統管理に不確実性をもたらす。デマンドサイドマネジメント(DSM)は、不確実性を低減するためのアプローチの一つである。
Nonintrusive Load Monitoring (NILM) のようなアプリケーションは DSM をサポートすることができるが、高解像度データの正確な予測は必要である。
高いボラティリティのため、一戸建て住宅のような単一負荷の場合、これは難しい。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integration of renewable energy sources and emerging loads like electric
vehicles to smart grids brings more uncertainty to the distribution system
management. Demand Side Management (DSM) is one of the approaches to reduce the
uncertainty. Some applications like Nonintrusive Load Monitoring (NILM) can
support DSM, however they require accurate forecasting on high resolution data.
This is challenging when it comes to single loads like one residential
household due to its high volatility. In this paper, we review some of the
existing Deep Learning-based methods and present our solution using Time
Pooling Deep Recurrent Neural Network. The proposed method augments data using
time pooling strategy and can overcome overfitting problems and model
uncertainties of data more efficiently. Simulation and implementation results
show that our method outperforms the existing algorithms in terms of RMSE and
MAE metrics.
- Abstract(参考訳): 再生可能エネルギー源と電気自動車のような新興負荷をスマートグリッドに統合することは、流通システム管理に不確実性をもたらす。
デマンドサイドマネジメント(Demand Side Management, DSM)は、不確実性を減らすためのアプローチのひとつ。
Nonintrusive Load Monitoring (NILM)のようなアプリケーションはDSMをサポートできるが、高解像度データの正確な予測が必要である。
これは、高いボラティリティのため、1つの住宅のような単一負荷では困難である。
本稿では,既存のDeep Learning-based methodについて概説し,Time Pooling Deep Recurrent Neural Networkを用いたソリューションを提案する。
提案手法は, 時間プーリング戦略を用いたデータ拡張を行い, オーバーフィッティング問題を克服し, データの不確かさをより効率的にモデル化する。
シミュレーションと実装の結果から,提案手法はRMSEとMAEの指標で既存のアルゴリズムよりも優れていることがわかった。
関連論文リスト
- Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
本稿では,破滅的な記憶を解消するための不確実性を考慮したメモリベース手法を提案する。
特定の特性を持つサンプルを検索し、そのようなサンプル上でモデルを再訓練することで、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-05-29T09:29:39Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - Creating Temporally Correlated High-Resolution Profiles of Load Injection Using Constrained Generative Adversarial Networks [0.18726646412385334]
本稿では,高分解能出力に時間的一貫性を強制するGAN(Generative Adversarial Network)を用いた新しい手法を提案する。
GANモデルのユニークな特徴は、スマートメーターから得られる遅い時間スケールの歴史的エネルギーデータのみに基づいて訓練されていることである。
その結果,15分間隔の平均消費電力情報から,時間的に時間的に相関した電力使用量のプロファイルを作成することができた。
論文 参考訳(メタデータ) (2023-11-20T20:32:14Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Reimagining Demand-Side Management with Mean Field Learning [0.0]
本稿では,DSMの新しい手法,特に所望の消費信号に従うために大量の電気機器を制御する問題を提案する。
我々は,凸関数とリプシッツ関数の理論的保証を提供する新しいアルゴリズムMD-MFCを開発した。
論文 参考訳(メタデータ) (2023-02-16T10:15:08Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
協調リレー通信システムにおける状態更新のセマンティックス更新度を測定するための意味学年代(AoS)を提案する。
オンライン・ディープ・アクター・クリティック(DAC)学習手法を,政治時間差学習の枠組みに基づいて提案する。
そこで我々は,以前に収集したデータセットから最適制御ポリシーを推定する,新しいオフラインDAC方式を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:55:28Z) - Effective Multi-User Delay-Constrained Scheduling with Deep Recurrent
Reinforcement Learning [28.35473469490186]
マルチユーザ遅延制約スケジューリングは、無線通信、ライブストリーミング、クラウドコンピューティングを含む多くの現実世界アプリケーションにおいて重要である。
Recurrent Softmax Delayed Deep Double Deterministic Policy Gradient (mathttRSD4$) という深部強化学習アルゴリズムを提案する。
$mathttRSD4$は、それぞれLagrangianのデュアルと遅延に敏感なキューによるリソースと遅延の制約を保証する。
また、リカレントニューラルネットワーク(RNN)によって実現されたメモリ機構により、部分的可観測性にも効率よく取り組み、ユーザレベルの分解とノードレベルを導入している。
論文 参考訳(メタデータ) (2022-08-30T08:44:15Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
パラメタライズされた時間依存問題に対する多要素代理モデリングの新しいデータ駆動フレームワークを提案する。
提案した多要素LSTMネットワークは, シングルフィデリティ回帰を著しく向上するだけでなく, フィードフォワードニューラルネットワークに基づくマルチフィデリティモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-05T12:05:02Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。