論文の概要: Electrical Load Forecasting over Multihop Smart Metering Networks with Federated Learning
- arxiv url: http://arxiv.org/abs/2502.17226v1
- Date: Mon, 24 Feb 2025 15:04:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:53:06.440545
- Title: Electrical Load Forecasting over Multihop Smart Metering Networks with Federated Learning
- Title(参考訳): フェデレート学習によるマルチホップスマート計測ネットワーク上の電力負荷予測
- Authors: Ratun Rahman, Pablo Moriano, Samee U. Khan, Dinh C. Nguyen,
- Abstract要約: 本稿では,計測ネットワークにおける高次負荷予測のためのPFL手法を提案する。
PFLモデルにおける負荷予測遅延を最小限に抑えるため,SMの最適資源割り当てに基づく新しいレイテンシ最適化問題を提案する。
本手法は,負荷予測の高速化と運用遅延コストの低減の観点から,既存手法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.1008520905907015
- License:
- Abstract: Electric load forecasting is essential for power management and stability in smart grids. This is mainly achieved via advanced metering infrastructure, where smart meters (SMs) record household energy data. Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing which raises data privacy concerns. Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange. However, current FL-based approaches struggle to achieve efficient load forecasting due to imbalanced data distribution across heterogeneous SMs. This paper presents a novel personalized federated learning (PFL) method for high-quality load forecasting in metering networks. A meta-learning-based strategy is developed to address data heterogeneity at local SMs in the collaborative training of local load forecasting models. Moreover, to minimize the load forecasting delays in our PFL model, we study a new latency optimization problem based on optimal resource allocation at SMs. A theoretical convergence analysis is also conducted to provide insights into FL design for federated load forecasting. Extensive simulations from real-world datasets show that our method outperforms existing approaches in terms of better load forecasting and reduced operational latency costs.
- Abstract(参考訳): スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
これは主に、スマートメーター(SM)が家庭用エネルギーデータを記録する高度な計測インフラによって達成される。
従来の機械学習(ML)メソッドは、負荷予測によく使用されるが、データプライバシの懸念を引き起こすデータ共有が必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
しかし、現在のFLベースのアプローチは、不均質SM間の不均衡なデータ分布による効率的な負荷予測を実現するのに苦労している。
本稿では,計測ネットワークにおける高次負荷予測のためのPFL手法を提案する。
局所負荷予測モデルの協調学習において、局所的なSMにおけるデータの均一性に対処するメタラーニングベースの戦略を開発した。
さらに,PFLモデルにおける負荷予測遅延を最小限に抑えるため,SMの最適資源配分に基づく新しいレイテンシ最適化問題について検討した。
また,フェデレート負荷予測のためのFL設計について,理論的収束解析を行った。
実世界のデータセットからの大規模なシミュレーションにより、負荷予測の改善と運用遅延コストの低減の観点から、我々の手法が既存の手法より優れていることが示された。
関連論文リスト
- Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
従来の機械学習(ML)手法は負荷予測によく使用されるが、データ共有は必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
論文 参考訳(メタデータ) (2024-11-15T22:44:50Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
PL-FLと呼ばれる一般的なフレームワークにおいて,負荷予測のためのパーソナライズレイヤを提案する。
PL-FLはFLよりも通信帯域幅が小さいため、FLと純粋に局所訓練に優れることを示す。
論文 参考訳(メタデータ) (2024-04-01T22:53:09Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:27:55Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Towards Energy-Aware Federated Traffic Prediction for Cellular Networks [2.360352205004026]
本稿では機械学習モデル(ML)の実現可能性を評価するための新しいサステナビリティ指標を提案する。
スペイン・バルセロナ地区の基地局(BS)からの実測値を用いて,最先端のディープラーニング(DL)アーキテクチャを連邦シナリオで評価した。
以上の結果から,より大きなMLモデルでは性能が著しく向上するが,炭素フットプリントの面では環境への影響が大きいことが示唆された。
論文 参考訳(メタデータ) (2023-09-19T14:28:09Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
エネルギー需要予測は、需要と供給のバランスを保ち、電力網の安定的な負荷を維持するためにエネルギー産業内で実施される重要な課題である。
供給が信頼性の低い再生可能エネルギー生成へと移行するにつれ、スマートメーターはこれらの予測タスクを支援する上で不可欠な要素であることが証明される。
しかし、プライバシーを意識した消費者は、詳細な消費データへの侵入を恐れている。
論文 参考訳(メタデータ) (2021-05-27T17:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。