論文の概要: Effect Of Personalized Calibration On Gaze Estimation Using
Deep-Learning
- arxiv url: http://arxiv.org/abs/2109.12801v1
- Date: Mon, 27 Sep 2021 05:14:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 04:50:39.767793
- Title: Effect Of Personalized Calibration On Gaze Estimation Using
Deep-Learning
- Title(参考訳): ディープラーニングを用いた視線推定におけるパーソナライズ校正の効果
- Authors: Nairit Bandyopadhyay, S\'ebastien Riou, Didier Schwab
- Abstract要約: 我々は畳み込みニューラルネットワークを訓練し、その性能を校正なしで分析する。
この評価は、野生での視線推定において、Deep Learningモデルの性能をキャリブレーションがいかに改善したかを明確にする。
- 参考スコア(独自算出の注目度): 10.815594142396497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increase in computation power and the development of new
state-of-the-art deep learning algorithms, appearance-based gaze estimation is
becoming more and more popular. It is believed to work well with curated
laboratory data sets, however it faces several challenges when deployed in real
world scenario. One such challenge is to estimate the gaze of a person about
which the Deep Learning model trained for gaze estimation has no knowledge
about. To analyse the performance in such scenarios we have tried to simulate a
calibration mechanism. In this work we use the MPIIGaze data set. We trained a
multi modal convolutional neural network and analysed its performance with and
without calibration and this evaluation provides clear insights on how
calibration improved the performance of the Deep Learning model in estimating
gaze in the wild.
- Abstract(参考訳): 計算能力の増大と新しい最先端ディープラーニングアルゴリズムの開発により、外見に基づく視線推定がますます人気が高まっている。
ラボラトリーデータセットのキュレーションはうまく機能すると考えられているが、現実のシナリオでデプロイする場合、いくつかの課題に直面している。
そのような課題の1つは、視線推定のために訓練されたディープラーニングモデルに知識がない人の視線を推定することである。
このようなシナリオのパフォーマンスを分析するために、私たちはキャリブレーション機構をシミュレートしようとしました。
この作業ではMPIIGazeデータセットを使用します。
我々は,マルチモーダル畳み込みニューラルネットワークを訓練し,キャリブレーションなしでその性能を解析した。この評価により,野生の視線推定におけるディープラーニングモデルの性能改善に関する明確な知見が得られる。
関連論文リスト
- Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
我々は、訓練データとテストデータの間の相互影響を浮き彫りにして、ミラーレッド影響仮説を導入し、探求する。
具体的には、テスト予測に対するトレーニングデータの影響を評価することは、等価だが逆問題として再定義することができることを示唆している。
トレーニングポイント毎に前方パスとペアを組むことで,特定のテストサンプルの勾配を計算し,トレーニングデータの影響を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T03:43:05Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
信頼性キャリブレーションは、ディープモデルの信頼性を高める重要なツールである。
構築プロセス全体を通して、アライメント言語モデルの校正を体系的に検討する。
我々の研究は、人気のあるLCMが十分に校正されているか、トレーニングプロセスがモデルの校正にどのように影響するかに光を当てています。
論文 参考訳(メタデータ) (2023-11-22T08:57:55Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
我々は、オフラインモデルに基づく逆強化学習(IRL)に対するベイズ的アプローチを考える。
提案フレームワークは,専門家の報酬関数と環境力学の主観的モデルとを同時推定することにより,既存のオフラインモデルベースIRLアプローチとは異なる。
本分析は, 専門家が環境の高精度なモデルを持つと考えられる場合, 評価政策が堅牢な性能を示すという新たな知見を提示する。
論文 参考訳(メタデータ) (2023-09-15T17:37:09Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Deep Learning Training Procedure Augmentations [0.0]
近年のディープラーニングの進歩は、オブジェクト検出、画像分割、感情分析など、さまざまなタスクのパフォーマンスを大幅に改善している。
これは大きな成果をもたらしたが、その多くは現実世界のアプリケーションでは、ディープラーニングの他の関連する側面は無視され、不明である。
優れた性能を発揮できる一方で、収束速度、最適化ランドスケープ、対向ロバスト性に関する興味深い分析結果も提示する。
論文 参考訳(メタデータ) (2022-11-25T22:31:11Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Learning-by-Novel-View-Synthesis for Full-Face Appearance-based 3D Gaze
Estimation [8.929311633814411]
本研究は,単眼の3次元顔再構成に基づく視線推定訓練データを合成するための新しいアプローチについて検討する。
マルチビュー再構成、フォトリアリスティックCGモデル、または生成ニューラルネットワークを用いた以前の研究とは異なり、我々のアプローチは既存のトレーニングデータの頭部ポーズ範囲を操作および拡張することができる。
論文 参考訳(メタデータ) (2022-01-20T00:29:45Z) - Appearance-based Gaze Estimation With Deep Learning: A Review and Benchmark [14.306488668615883]
本稿では,ディープラーニングを用いた外見に基づく視線推定手法の体系的レビューを行う。
顔/目の検出,データ修正,2D/3D視線変換,視線原点変換など,データ前処理と後処理の方法を要約する。
論文 参考訳(メタデータ) (2021-04-26T15:53:03Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。